Space Science Reviews

, Volume 139, Issue 1–4, pp 143–189 | Cite as

Modeling and Simulating Flowing Plasmas and Related Phenomena

  • S. A. Ledvina
  • Y.-J. Ma
  • E. Kallio


Simulation has become a valuable tool that compliments more traditional methods used to understand solar system plasmas and their interactions with planets, moons and comets. The three popular simulation approaches to studying these interactions are presented. Each approach provides valuable insight to these interactions. To date no one approach is capable of simulating the whole interaction region from the collisionless to the collisional regimes. All three approaches are therefore needed. Each approach has several implicit physical assumptions as well as several numerical assumptions depending on the scheme used. The magnetohydrodynamic (MHD), test-particle/Monte-Carlo and hybrid models used in simulating flowing plasmas are described. Special consideration is given to the implicit assumptions underlying each model. Some of the more common numerical methods used to implement each model, the implications of these numerical methods and the resulting limitations of each simulation approach are also discussed.


Plasma Magnetohydrodynamics Test-particle Hybrid Simulations Numerical methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. H. Backes et al., Titan’s magnetic field signature during the first Cassini encounter. Science 308, 992 (2005) ADSCrossRefGoogle Scholar
  2. T. Bagdonat, U. Motschmann, From a weak to a strong comet—3D global hybrid simulation studies. Earth, Moon Planets 90, 305–321 (2002) ADSCrossRefGoogle Scholar
  3. F. Bagenal, T.E. Cravens, J.G. Luhmann, R.L. McNutt, A.F. Cheng, Pluto’s interaction with the solar wind, in Pluto and Charon, ed. by S.A. Stern, D.J. Tholen (University of Arizona Press, Tucson, 1997), p. 523 Google Scholar
  4. D.S. Balsara, D.S. Spicer, A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations. J. Comput. Phys. 149, 270 (1999) zbMATHADSMathSciNetCrossRefGoogle Scholar
  5. K. Baumgartel, K. Sauer, Interaction of a magnetized plasma stream with an immobile ion cloud. Ann. Geophys. 10, 763 (1992) ADSGoogle Scholar
  6. R. Bauske, A.F. Nagy, T.I. Gombosi, D.L. DeZeeuw, K.G. Powell, J.G. Luhmann, A three-dimensional MHD study of solar wind mass loading processes at Venus: Effects of photoionization, electron impact ionization and charge exchange. J. Geophys. Res. 103, 23,625 (1998) ADSCrossRefGoogle Scholar
  7. C.K. Birdsall, A.B. Langdon, Plasma Physics via Computer Simulations (McGraw-Hill, USA, 1985) Google Scholar
  8. C.K. Birdsall, A.B. Langdon, Plasma Physics via Computer Simulation (Taylor & Francis, London, 2004) Google Scholar
  9. A. Bößwetter, T. Bagdonat, U. Motschmann, K. Sauer, Plasma boundaries at Mars: A 3-D simulation study. Ann. Geophys. 22, 4363–4379 (2004) ADSGoogle Scholar
  10. J.P. Boris, Relativistic plasma simulation-optimization of a hybrid code, in Proc. Fourth Conf. Num. Sim. Plasmas, Naval Res. Lab., Wash., D.C., 2–3 November 1970, pp. 3–67 Google Scholar
  11. S.H. Brecht, J.F. Ferrante, Global hybrid simulation of unmagnetized planets: Comparison of Venus and Mars. J. Geophys. Res. 96, 11,209–11,220 (1991) ADSCrossRefGoogle Scholar
  12. S.H. Brecht, S.A. Ledvina, The solar wind interaction with the Martian ionosphere/atmosphere. Space Sci. Rev. 126, 15–38 (2006). doi: 10.1007/s11214-006-9084-z ADSCrossRefGoogle Scholar
  13. S.H. Brecht, V.A. Thomas, Multidimensional simulations using hybrid particle codes. Comput. Phys. Commun. 48, 135–143 (1988) ADSCrossRefGoogle Scholar
  14. S.H. Brecht, J. Lyon, J.A. Fedder, K. Hain, A simulation study of east-west IMF effects on the magnetosphere. Geophys. Res. Lett. 8(4), 397–400 (1981) ADSCrossRefGoogle Scholar
  15. S.H. Brecht, J.G. Luhmann, D.J. Larson, Simulation of the Saturnian magnetospheric interaction with Titan. J. Geophys. Res. 105, 13,119–13,130 (2000) ADSCrossRefGoogle Scholar
  16. S.H. Brecht, I. de Pater, D.J. Larson, M.E. Pesses, Modification of the jovian radiation belts by Shoemaker-Levy 9: An explanation of the data. Icarus 151(1), 25–38 (2001) ADSCrossRefGoogle Scholar
  17. D.A. Bryant, Ion release experiments in the solar wind. Plasma Phys. Control. Fusion 27, 1369 (1985) ADSCrossRefGoogle Scholar
  18. O. Buneman, Time-reversible difference procedures. J. Comput. Phys. 1, 517 (1967) zbMATHADSCrossRefGoogle Scholar
  19. A. Calder et al., Validating astrophysical simulation codes. Comput. Sci. Eng. 6, 10 (2004) CrossRefGoogle Scholar
  20. F. Cipriani, F. Leblanc, J.J. Berthelier, Martian corona: Nonthermal sources of hot heavy species. J. Geophys. Res. 112, E07001 (2007). doi: 10.1029/2006JE002818 CrossRefGoogle Scholar
  21. T.E. Cravens, Ion distribution functions in the vicinity of Comet Giacobini-Zinner. Geophys. Res. Lett. 13, 276 (1986) ADSCrossRefGoogle Scholar
  22. T.E. Cravens, A magnetohydrodynamical model of the inner coma of comet Halley. J. Geophys. Res. 94, 15025 (1989) ADSCrossRefGoogle Scholar
  23. T.E. Cravens, Physics of Solar System Plasmas (Cambridge University Press, Cambridge, 1997) Google Scholar
  24. T.E. Cravens, C.J. Lindgren, S.A. Ledvina, A two-dimensional multifluid MHD model of Titan’s plasma environment. Planet. Space Sci. 46, 1193 (1998) ADSCrossRefGoogle Scholar
  25. T.E. Cravens, A. Hoppe, S.A. Ledvina, S. McKenna-Lawlor, Pickup ions near Mars associated with escaping oxygen atoms. J. Geophys. Res. 107(A8), 1170 (2002). doi: 10.1029/2001JA000125 CrossRefGoogle Scholar
  26. W. Dai, P.R. Woodward, On the divergence-free condition and conservation laws in numerical simulations for supersonic magnetohydrodynamic flows. Astrophys. J. 494, 317 (1998) ADSCrossRefGoogle Scholar
  27. P.A. Delamere, F. Bagenal, Pluto’s kinetic interaction with the solar wind. Geophys. Res. Lett. 31, L04807 (2004). doi: 1029/2003GL018122 CrossRefGoogle Scholar
  28. C.R. Evans, J.F. Hawley, Simulation of magnetohydrodynamic flows—a constrained transport method. Astrophys. J. 332, 659 (1988) ADSCrossRefGoogle Scholar
  29. J.A. Fedder, J.G. Lyon, The solar wind-magnetosphere-ionosphere current-voltage relationship. Geophys. Res. Lett. 14, 880–883 (1987) ADSCrossRefGoogle Scholar
  30. T.I. Gombosi, Gaskinetic Theory (Cambridge University Press, Cambridge, 1994) Google Scholar
  31. T.I. Gombosi, Physics of the Space Environment (Cambridge University Press, Cambridge, 1999) Google Scholar
  32. T.I. Gombosi, D.L. De Zeeuw, R.M. Haberli, K.G. Powell, Three-dimensional multiscale MHD model of cometary plasma environments. J. Geophys. Res. 101, 15233 (1996) ADSCrossRefGoogle Scholar
  33. T.I. Gombosi, D.L. De Zeeuw, C.P.T. Groth, K.G. Powell, P. Song, The length of the magnetotail for northward IMF: Results of 3D MHD simulations. Phys. Space Plasmas 15, 121–128 (1998) Google Scholar
  34. C.P.T. Groth, D.L. DeZeeuw, T.I. Gombosi, K.G. Powell, A parallel adaptive 3D MHD scheme for modeling coronal and solar wind plasma flows. Space Sci. Rev. 87, 193 (1999) ADSCrossRefGoogle Scholar
  35. H. Gunell, M. Holmström, S. Barabash, E. Kallio, P. Janhunen, A.F. Nagy, Y. Ma, Planetary ENA imaging: Effects of different interaction models for Mars. Planet. Space Sci. 54, 117–131 (2006) ADSCrossRefGoogle Scholar
  36. K. Hain, Behavior of ionized plasma in the high latitude topside ionosphere. NRL Memorandum Report 3713 (1977), p. 1 Google Scholar
  37. K.C. Hansen, T.I. Gombosi, D.L. De Zeeuw, C.P.T. Groth, K.G. Powell, A 3D global MHD simulation of Saturn’s magnetosphere. Adv. Space Res. 26(10), 1681–1690 (2000) ADSCrossRefGoogle Scholar
  38. K.C. Hansen et al., Global MHD simulations of Saturn’s magnetosphere at the time of Cassini approach. Geophys. Res. Lett. 32, L20S06 (2005). doi: 10.1029/2005GL022835 CrossRefGoogle Scholar
  39. D.S. Harned, Quasineutral hybrid simulation of macroscopic plasma phenomena. J. Comput. Phys. 47, 452–462 (1982) zbMATHADSCrossRefGoogle Scholar
  40. E.M. Harnett, R.M. Winglee, P.A. Delemere, Three-dimensional multi-fluid simulations of Pluto’s magnetosphere: A comparison to 3D hybrid simulations. Geophys. Res. Lett. 32, L19104 (2005). doi: 10.1029/2005GL023178 ADSCrossRefGoogle Scholar
  41. R.E. Hartle et al., Preliminary interpretation of titan plasma interaction as observed by the Cassini plasma spectrometer: Comparisons with Voyager 1. Geophys. Res. Lett. 33, L08201 (2006). doi: 10.1029/2005GL024817 CrossRefGoogle Scholar
  42. L. Hatton, A. Roberts, IEEE Trans. Softw. Eng. 20, 785 (1994) CrossRefGoogle Scholar
  43. C. Hirsch, Numerical Computation of Internal and External Flows, vol. 1 (Wiley, New York, 1989) Google Scholar
  44. R.W. Hockney, J.W. Eastwood, Computer Simulation Using Particles (Adam Hilger, Bristor ans Philadelphia, 1988). ISBN 0-85274-392-0 zbMATHGoogle Scholar
  45. J. Hubba, Hall magnetohydrodynamics – A tutorial, Space Plasma Simulation. Edited by J. Büchner, C. Dum, M. Scholer. Lect. Notes Phys. 615, 166–192 (2003) ADSCrossRefGoogle Scholar
  46. W.-H. Ip et al., Pluto’s ionospheric models and solar wind interaction. Adv. Space Res. 26, 1559–1563 (2000) ADSCrossRefGoogle Scholar
  47. Y.-D. Jia, M.R. Combi, K.C. Hansen, T.I. Gombosi, A global model of cometary tail disconnection events triggered by solar wind magnetic variations. J. Geophys. Res. 112, A05223 (2007). doi: 10.1029/2006JA012175 CrossRefGoogle Scholar
  48. K. Kabin, T.I. Gombosi, D.L. De Zeeuw, K.G. Powell, Interaction of Mercury with the solar wind. Icarus 143, 397–406 (2000) ADSCrossRefGoogle Scholar
  49. E. Kallio, J.G. Luhmann, S. Barabash, Charge exchange near Mars: the solar wind absorption and energetic neutral atom production. J. Geophys. Res. 102, 22183–22197 (1997) ADSCrossRefGoogle Scholar
  50. E. Kallio, H. Koskinnen, A test particle simulation of the motion of oxygen ions and solar wind protons near Mars. J. Geophys. Res. 104, 557–579 (1999) ADSCrossRefGoogle Scholar
  51. E. Kallio, P. Janhunen, Atmospheric effects of proton precipitation in the Martian atmosphere and its connection to the Mars-solar wind interaction. J. Geophys. Res. 106, 5617–5634 (2001) ADSCrossRefGoogle Scholar
  52. E. Kallio, P. Janhunen, Ion escape from Mars in a quasineutral hybrid model. J. Geophys. Res. 107, A3 (2002) CrossRefGoogle Scholar
  53. E. Kallio, P. Janhunen, Solar wind and magnetospheric ion impact on Mercury’s surface. Geophys. Res. Lett. 30, 17,1877 (2003). doi: 10.1029/2003GL017842 CrossRefGoogle Scholar
  54. E. Kallio, I. Sillanpää, P. Janhunen, Titan in subsonic and supersonic flow. Geophys. Res. Lett. 31, L15703 (2004). doi: 10.1029/2004GL020344 ADSCrossRefGoogle Scholar
  55. E. Kallio, Formation of the lunar wake in quasi-neutral hybrid model. Geophys. Res. Lett. 32, L06107 (2005). doi: 10.1029/2004GL021989 CrossRefGoogle Scholar
  56. E. Kallio, R. Järvinen, P. Janhunen, Venus-Solar wind interaction: Asymmetries and the escape of O+ ions. Planet. Space Sci. 54, 1472–1481 (2006) ADSCrossRefGoogle Scholar
  57. H. Karimabadi, D. Krauss-Varban, J.D. Huba, H.X. Vu, On magnetic reconnection regimes and associated three-dimensional asymmetries: Hybrid, Hall-less hybrid, and Hall-MHD simulations. J. Geophys. Res. 109, A09205 (2004). doi: 10.1029/2004JA010478 CrossRefGoogle Scholar
  58. K. Kecskemety, T.E. Cravens, Pickup ions at Pluto. Geophys. Res. Lett. 20, 543 (1993) ADSCrossRefGoogle Scholar
  59. C.D. Kimmel, J.G. Luhmann, J.L. Phillips, J.A. Fedder, Characteristics of cometary pickup-up ions in a global model of Giacobini-Zinner. J. Geophys. Res. 92, 8536 (1987) ADSCrossRefGoogle Scholar
  60. N.A. Krall, A.W. Trivelpiece, Principles of Plasma Physics (McGraw-Hill, New York, 1973) Google Scholar
  61. D. Krauss-Varban, From theoretical foundation to invaluable research tool: Modern hybrid simulations, in Proceedings of the 7th International Symposium for Space Simulations (ISSI 7), Kyoto University, 2005, pp. 15–18 Google Scholar
  62. C.N. Keller, T.E. Cravens, L. Gan, One-dimensional multispecies magnetohydrodynamic models of the ramside ionosphere of Titan. J. Geophys. Res. 99, 6511 (1994) ADSCrossRefGoogle Scholar
  63. H. Lammer, H.I.M. Lichtenegger, H.K. Biernat, N.V. Erkaev, I.L. Arshukova, C. Kolb, H. Gunell, A. Lukyanov, M. Holmstrom, S. Barabash, T.L. Zhang, W. Baumjohann, Planet. Space Sci. 54, 1445–1456 (2006) ADSCrossRefGoogle Scholar
  64. J.N. Lcboeuf, T. Tajima, C.F. Kennel, J.M. Dauhon, Glohal simulations of the time-dependent niagnetosphcrc. Geophys. Res. Lett. 5, 609 (1978) ADSCrossRefGoogle Scholar
  65. S.A. Ledvina, T.E. Cravens, A three-dimensional MHD model of plasma flow around Titan. Planet. Space Sci. 46, 1175 (1998) ADSCrossRefGoogle Scholar
  66. S.A. Ledvina, T.E. Cravens, A. Salman, K. Kecskeméty, Ion trajectories in Saturn’s magnetosphere near Titan. Adv. Space Res. 26, 1691 (2000) ADSCrossRefGoogle Scholar
  67. S.A. Ledvina, J.G. Luhmann, S.H. Brecht, T.E. Cranvens, Titan’s induced magnetosphere. Adv. Space Res. 33, 2092 (2004a) ADSCrossRefGoogle Scholar
  68. S.A. Ledvina, S.H. Brecht, J.G. Luhmann, J. Geophys. Res. 31 (2004b). CiteID L17S10 Google Scholar
  69. S.A. Ledvina, T.E. Cravens, K. Kecskemety, Ion distributions in Saturn’s magnetosphere near Titan, J. Geophys. Res. 110 (2005). CiteID A06211 Google Scholar
  70. A. Lipatov, The Hybrid Multiscale Simulation Technology (Springer, Berlin, 2002) zbMATHGoogle Scholar
  71. Y. Liu, A.F. Nagy, T.I. Gombosi, D.L. DeZeeuw, K.G. Powell, The solar wind interaction with Mars: Results of three-dimensional three-species MHD studies. Adv. Space Res. 27, 1837 (2001) ADSCrossRefGoogle Scholar
  72. G. Lu, P.H. Reiff, M.R. Hairston, R.A. Heelis, J.L. Karty, Distribution of convection potential around the polar cap boundary as a function of the interplanetary magnetic field. J. Geophys. Res. 94, 13447 (1989) ADSCrossRefGoogle Scholar
  73. J.G. Luhmann, S.A. Ledvina, J.G. Lyon, C.T. Russell, Planet. Space Sci. 54, 1457–1471 (2006) ADSCrossRefGoogle Scholar
  74. J.G. Luhmann, Titan’s ion exospheric wake: A natural ion mass spectrometer? J. Geophys. Res. 101, 29,387 (1996) ADSGoogle Scholar
  75. J.G. Luhmann, J.A. Fedder, D. Winske, A test particle model of pickup ions at comet Halley. J. Geophys. Res. 93, 7532 (1988) ADSCrossRefGoogle Scholar
  76. J.G. Lyon, J.A. Fedder, C.M. Mobarry, The Lyon-Fedder-Mobarry (LFM) global MHD magnetospheric simulation code. J. Atmos. Sol.-Terr. Phys. 66, 1333–1350 (2004) ADSCrossRefGoogle Scholar
  77. Y.J. Ma, A.F. Nagy, T.E. Cravens, I.V. Sokolov, J. Clark, K.C. Hansen, 3-D Global MHD model Prediction of the first close flyby of Titan by Cassini. Geophys. Res. Let. 31, L22803 (2004a) ADSCrossRefGoogle Scholar
  78. Y.J. Ma, A.F. Nagy, I.V. Sokolov, K.C. Hansen, Three-dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars. J. Geophys. Res. 109, A07211 (2004b). doi: 10.1029/2003JA010367 CrossRefGoogle Scholar
  79. Y. Ma, A.F. Nagy, T.E. Cravens, I.V. Sokolov, K.C. Hansen, J.-E. Wahlund, F.J. Crary, A.J. Coates, M.K. Dougherty, Comparisons between MHD model calculations and observations of Cassini flybys of Titan. J. Geophys. Res. 111, A05207 (2006). doi: 10.1029/2005JA011481 CrossRefGoogle Scholar
  80. Y. Ma et al., 3D global multi-species Hall-MHD simulation of the Cassini T9 flyby. Geophys. Res. Lett. (2007). doi: 10.1029/2007GL031627 Google Scholar
  81. Y. Ma, A.F. Nagy, K. Altwegg, T. Breus, M.R. Combi, T.E. Cravens, E. Kallio, S.A. Ledvina, J.G. Luhmann, S. Miller, A.J. Ridley, D.F. Strobel, Plasma flow and related phenomena in planetary aeronomy. Space Sci. Rev. (2008). doi: 10.1007/s11214-008-9389-1
  82. P. MacNeice, Particle-mesh techniques (1996).
  83. F. Mackay, R. Marchand, K. Kabin, Divergence-free magnetic field interpolation and charged particle trajectory integration. J. Geophys. Res. 111, A06208 (2006). doi: 10.1029/2005JA011382 CrossRefGoogle Scholar
  84. A.P. Matthews, Current advance method and cyclic leapfrog for 2D multispecies hybrid plasma simulations. J. Comput. Phys. 112, 102–116 (1994) zbMATHADSCrossRefGoogle Scholar
  85. M.L. McKenzie, T.E. Cravens, G. Ye, Theoretical calculations of ion acceleration in the vicinity of comet Giacobini-Zinner. J. Geophys. Res. 99, 6585 (1994) ADSCrossRefGoogle Scholar
  86. R. Modolo, G.M. Chanteur, E. Dubinin, A.P. Matthews, Influence of the solar EUV flux on the Martian plasma environment. Ann. Geophys. 23, 433–444 (2005) ADSGoogle Scholar
  87. R. Modolo, G.M. Chanteur, J.-E. Wahlund, P. Canu, W.S. Kurth, D. Gurnett, A.P. Matthews, C. Bertucci, A. Law, M.K. Doughert, The plasma environment in the wake of Titan from hybrid simulation—a case study. Geophys. Res. Lett. (2007, submitted) Google Scholar
  88. Neubauer et al., Titan’s near magnetotail from magnetic field and electron plasma observations and modeling: Cassini flybys TA, TB, and T3. J. Geophys. Res. 111, 10220 (2006) CrossRefGoogle Scholar
  89. D.R. Nicholson, Introduction to Plasma Theory (Wiley, New York, 1983) Google Scholar
  90. N. Omidi, X. Blanco-Cano, C.T. Russell, H. Karimabadi, M. Acuna, Hybrid simulations of solar wind interaction with magnetized asteroids: General characteristics. J. Geophys. Res. 107, A12 (2002) CrossRefGoogle Scholar
  91. A. Otto, Geospace Environment Modeling (GEM) magnetic reconnection challenge: MHD and Hall MHD—constant and current dependent resistivity models. J. Geophys. Res. 106(A3), 3751–3758 (2001) ADSCrossRefGoogle Scholar
  92. D.E. Post, L.G. Votta, Computational science demands a new paradigm. Phys. Today 58, 35 (2005) ADSCrossRefGoogle Scholar
  93. K.G. Powell, An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension). ICASE Report, No. 94-24, Langley, VA, 1994 Google Scholar
  94. K.G. Powell, P.L. Roe, T.J. Linde, T.I. Gombosi, D.L. DeZeeuw, A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J. Comput. Phys. 154, 284 (1999) zbMATHADSMathSciNetCrossRefGoogle Scholar
  95. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in Fortran: The Art of Scientific Computing, 2nd edn. (Cambridge Univ. Press, Cambridge, 1993) Google Scholar
  96. P. Puhl-Quinn, T.E. Cravens, One-dimensional hybrid simulations of the diamagnetic cavity boundary region of comet Halley. J. Geophys. Res. 100, 21631 (1995) ADSCrossRefGoogle Scholar
  97. J. Raeder, Global geospace modeling: Tutorial and review. Space plasma simulation. Edited by J. Büchner, C. Dum, M. Scholer. Lect. Notes Phys. 84 (2001) Google Scholar
  98. J. Raeder, Global Magnetohydrodynamics – A tutorial, space plasma simulation. Edited by J. Büchner, C. Dum, M. Scholer. Lect. Notes Phys. 615, 212 (2003) ADSCrossRefGoogle Scholar
  99. J. Ramshaw, A method for enforcing the solenoidal condition on magnetic fields in numerical calculations. J. Comput. Phys. 52, 592 (1983) zbMATHADSCrossRefGoogle Scholar
  100. K.V. Roberts, J.B. Taylor, Magnetohydrodynamic equations for finite Larmor radius. Phys. Rev. Lett. 8, 197 (1962) zbMATHADSCrossRefGoogle Scholar
  101. K. Sauer, K. Baumgartel, I. Axnas, N. Brenning, A fluid simulation of the AMPTE solar wind lithium release. Adv. Space Res. 10, 95 (1990) ADSCrossRefGoogle Scholar
  102. K. Sauer, A. Bogdanov, K. Baumgartel, Evidence of an ion composition boundary (protonopause) in bi-ion fluid simulations of solar wind mass loading. Geophys. Res. Lett. 21, 2255 (1994) ADSCrossRefGoogle Scholar
  103. K. Sauer, E. Dubinin, K. Baumgartel, Nonlinear MHD waves and discontinuities in the Martian magnetosheath: Observations and 2D bi-ion MHD simulations. Earth Planets Space 50, 793 (1998) ADSGoogle Scholar
  104. D. Schriver, J.-N. Leboeuf, M. Ashour-Abdalla, M. El-Alaoui, J.-M. Bosqued, V. Sotnikov, Loading experimental velocity distributions into particle-in-cell simulation of space and fusion plasmas. J. Plasma Phys. 72, 949 (2006) ADSCrossRefGoogle Scholar
  105. R.W. Schunk, A.F. Nagy, Ionospheres: Physics, Plasma Physics, and Chemistry (Cambridge Univ. Press, New York, 2000) Google Scholar
  106. I. Sillanpää, E. Kallio, R. Jarvinen, P. Janhunen, Oxygen ions at Titan’s exobase in a Voyager 1–type interaction from a hybrid simulation. J. Geophys. Res. 112, A12205 (2007). doi: 10.1029/2007JA012348 ADSCrossRefGoogle Scholar
  107. H. Shimazu, Three-dimensional hybrid simulation of magnetized plasma flow around an obstacle. Earth Planets Space 51, 383–393 (1999) ADSGoogle Scholar
  108. H. Shinagawa, T.E. Cravens, A one-dimensional multispecies magnetohydrodynamic model of the dayside ionosphere of Venus. J. Geophys. Res. 93, 11263 (1988) ADSCrossRefGoogle Scholar
  109. H. Shinagawa, T.E. Cravens, A one-dimensional multispecies magnetohydrodynamic model of the dayside ionosphere of Mars. J. Geophys. Res. 94, 6506 (1989) ADSCrossRefGoogle Scholar
  110. S. Simon, A. Bößwetter, U. Motschmann, K.H. Glassmeier, Plasma environment of Titan: A 3-D hybrid simulation study. Ann. Geophys. 24, 1113–1135 (2006a) ADSGoogle Scholar
  111. S. Simon, T. Bagdonat, U. Motschmann, K.-H. Glassmeier, Plasma environment of magnetized asteroids: A 3D hybrid simulation study. Ann. Geophys. 24, 407–414 (2006b) ADSCrossRefGoogle Scholar
  112. G. Sod, Numerical Methods in Fluid Dynamics (Cambridge University Press, Cambridge, 1985) zbMATHCrossRefGoogle Scholar
  113. K. Szego et al., Physics of mass-loaded plasmas. Space Science Rev. 94, 429–671 (2000) ADSCrossRefGoogle Scholar
  114. T. Tanaka, Configurations of the solar wind flow and magnetic field around the planets with no magnetic field: Calculation by a new MHD simulation scheme. J. Geophys. Res. 98, 17251 (1993) ADSCrossRefGoogle Scholar
  115. T. Tanaka, Generation mechanisms for magnetosphere-ionosphere current systems deduced from a three-dimensional MHD simulation of the solar wind-magnetosphere-ionosphere coupling process. J. Geophys. Res. 100, 12057 (1995) ADSCrossRefGoogle Scholar
  116. T. Tanaka, Effects of decreasing ionospheric pressure on the solar wind interaction with non-magnetized planets. Earth Planets Space 50, 259 (1998) ADSGoogle Scholar
  117. T. Tanaka, K. Murawski, Three-dimensional MHD simulation of the solar wind interaction with the ionosphere of Venus: Results of two-component reacting plasma simulation. J. Geophys. Res. 102, 19,805 (1997) ADSGoogle Scholar
  118. N. Terada, S. Machida, H. Shinagawa, Global hybrid simulation of the Kelvin–Helmholtz instability at the Venus ionopause. J. Geophys. Res. 107(A12), 1471 (2002). doi: 10.1029/2001JA009224 CrossRefGoogle Scholar
  119. G. Tóth, The div B=0 constraint in shock-capturing magnetohydrodynamics codes. J. Comput. Phys. 161, 605–652 (2000) zbMATHADSMathSciNetCrossRefGoogle Scholar
  120. G. Tóth, D. Odstrcil, Comparison of some flux corrected transport and total variation diminishing numerical schemes for hydrodynamic and magnetohydrodynamic problems. J. Comput. Phys. 128, 82 (1996) zbMATHADSCrossRefGoogle Scholar
  121. G. Tóth, P.L. Roe, Divergence and curl-preserving prolongation and restriction formulas. J. Comput. Phys. 180, 736 (2002) zbMATHADSMathSciNetCrossRefGoogle Scholar
  122. P. Trávníček, P. Hellinger, D. Schriver, S.D. Bale, Structure of the lunar wake: Two-dimensional global hybrid simulations. Geophys. Res. Lett. 32, L06102 (2005). doi: 10.1029/2004GL022243 CrossRefGoogle Scholar
  123. P. Trávnìček, P. Hellinger, D. Schriver, Structure of Mercury’s magnetosphere for different pressure of the solar wind: Three dimensional hybrid simulations. Geophys. Res. Lett. 34, L05104 (2007). doi: 10.1029/2006GL028518 CrossRefGoogle Scholar
  124. W.-L. Tseng, W.-H. Ip, A. Kopp, Exospheric heating by pickup ions at Titan. Adv. Space Res. 42, 54–60 (2008) ADSCrossRefGoogle Scholar
  125. M.S. Voigt, Time-dependent MHD simulations for cometary plasma. Astron. Astrophys. 210, 433 (1989) zbMATHADSGoogle Scholar
  126. R.M. Winglee, Ion cyclotron and heavy ion effects on reconnection in a global magnetotail. J. Geophys. Res. 109, A09206 (2004). doi: 10.1029/2004JA010385 CrossRefGoogle Scholar
  127. R.M. Winglee, E. Harnett, A. Stickle, J. Porter, Multiscale/multifluid simulations of flux ropes at the magnetopause within a global magnetospheric model. J. Geophys. Res. 113, A02209 (2008). doi: 10.1029/2007JA012653 CrossRefGoogle Scholar
  128. D. Winske, N. Omidi, A nonspecialist’s guide to kinetic simulations of space plasmas. J. Geophys. Res. 101(A8), 17,287–17,303 (1996) ADSCrossRefGoogle Scholar
  129. D. Winske, L. Yin, N. Omidi, H. Karimabadi, K. Quest, Hybrid simulation codes: Past, present and future – A tutorial. Space Plasma Simulation. Edited by J. Büchner, C. Dum, M. Scholer. Lect. Notes Phys. 615, 136–165 (2003) ADSCrossRefGoogle Scholar
  130. K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Ant. Propagat 14, 302 (1966) ADSCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Space Sciences LabUniversity of CaliforniaBerkeleyUSA
  2. 2.IGPPUCLALos AngelesUSA
  3. 3.Finnish Meteorological Inst.Space Research UnitHelsinkiFinland

Personalised recommendations