Space Science Reviews

, Volume 141, Issue 1–4, pp 453–476

First Results from the THEMIS Mission

  • V. Angelopoulos
  • D. Sibeck
  • C. W. Carlson
  • J. P. McFadden
  • D. Larson
  • R. P. Lin
  • J. W. Bonnell
  • F. S. Mozer
  • R. Ergun
  • C. Cully
  • K. H. Glassmeier
  • U. Auster
  • A. Roux
  • O. LeContel
  • S. Frey
  • T. Phan
  • S. Mende
  • H. Frey
  • E. Donovan
  • C. T. Russell
  • R. Strangeway
  • J. Liu
  • I. Mann
  • J. Rae
  • J. Raeder
  • X. Li
  • W. Liu
  • H. J. Singer
  • V. A. Sergeev
  • S. Apatenkov
  • G. Parks
  • M. Fillingim
  • J. Sigwarth
Article

Abstract

THEMIS was launched on February 17, 2007 to determine the trigger and large-scale evolution of substorms. During the first seven months of the mission the five satellites coasted near their injection orbit to avoid differential precession in anticipation of orbit placement, which started in September 2007 and led to a commencement of the baseline mission in December 2007. During the coast phase the probes were put into a string-of-pearls configuration at 100 s of km to 2 RE along-track separations, which provided a unique view of the magnetosphere and enabled an unprecedented dataset in anticipation of the first tail season. In this paper we describe the first THEMIS substorm observations, captured during instrument commissioning on March 23, 2007. THEMIS measured the rapid expansion of the plasma sheet at a speed that is commensurate with the simultaneous expansion of the auroras on the ground. These are the first unequivocal observations of the rapid westward expansion process in space and on the ground. Aided by the remote sensing technique at energetic particle boundaries and combined with ancillary measurements and MHD simulations, they allow determination and mapping of space currents. These measurements show the power of the THEMIS instrumentation in the tail and the radiation belts. We also present THEMIS Flux Transfer Events (FTE) observations at the magnetopause, which demonstrate the importance of multi-point observations there and the quality of the THEMIS instrumentation in that region of space.

Keywords

THEMIS Magnetosphere Substorms Radiation belts Magnetopause 

PACS

94.30.-d 94.30.cl 94.30.cb 94.30.ch 94.30.cj 94.30.C- 94.30.cp 94.30.Lr 94.30.Va 94.30.Xy 96.50.Fm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.-I. Akasofu, Physics of Magnetospheric Substorms (Reidel, Dordrecht, 1976) Google Scholar
  2. V. Angelopoulos et al., Statistical characteristics of bursty bulk flow events. J. Geophys. Res. 99, 21257 (1994) CrossRefADSGoogle Scholar
  3. V. Angelopoulos et al., Magnetotail flow bursts: association to global magnetospheric circulation, relationship to ionospheric activity and direct evidence for localization. Geophys. Res. Lett. 24, 2271 (1997) CrossRefADSGoogle Scholar
  4. V. Angelopoulos et al., Multipoint analysis of a bursty bulk flow event on April 11, 1985. J. Geophys. Res. 101, 4967 (1996) CrossRefADSGoogle Scholar
  5. V. Angelopoulos et al., On the relationship between bursty flows, current disruption and substorms. Geophys. Res. Lett. 26, 2841 (1999) CrossRefADSGoogle Scholar
  6. V. Angelopoulos, The THEMIS mission. Space Sci. Rev. (2008, this issue). doi:10.1007/s11214-008-9336-1
  7. G. Atkinson, The current system of geomagnetic bays. J. Geophys. Res. 23, 6063 (1967) CrossRefADSGoogle Scholar
  8. U. Auster et al., Space Sci. Rev. (2008, this issue). doi:10.1007/s11214-008-9365-9
  9. D.N. Baker et al., Neutral line model of substorms: Past results and present view. J. Geophys. Res. 101, 12975 (1996) CrossRefADSGoogle Scholar
  10. J. Bonnell et al., Space Sci. Rev. (2008, this issue) Google Scholar
  11. C.W. Carlson et al., Space Sci. Rev. (2008, this issue) Google Scholar
  12. C. Cully et al., Space Sci. Rev. (2008, this issue) Google Scholar
  13. P.W. Daly et al., Sounding of the plasma sheet in the deep geomagnetic tail using energetic particles. Geophys. Res. Lett. 11, 1070 (1984) CrossRefADSGoogle Scholar
  14. D.H. Fairfield et al., Geotail observations of substorm onset in the inner magnetotail. J. Geophys. Res. 103, 103 (1998) CrossRefADSGoogle Scholar
  15. L.A. Frank et al., The Visible Imaging System for the POLAR Spacecraft. Space Sci. Rev. 71, 297 (1995) CrossRefADSGoogle Scholar
  16. S. Frey et al., Space Sci. Rev. (2008, this issue) Google Scholar
  17. S. Harris et al., Space Sci. Rev. (2008, this issue). doi:10.1007/s11214-007-9294-z
  18. R.A. Hoffman et al., Characteristics of the field-aligned current system in the nighttime sector during auroral substorms. J. Geophys. Res. 99(A11), 21303 (1994) CrossRefADSGoogle Scholar
  19. B.L. Horning, R.L. McPherron, D.D. Jackson, Application of linear inverse theory to a line current model of substorm current systems. J. Geophys. Res. 79(34), 5202–5210 (1974) CrossRefADSGoogle Scholar
  20. C. Jacquey et al., Location and propagation of the magnetotail current disruption during substorm expansion: analysis and simulation of an ISEE multi-onset event. Geophys. Res. Lett. 3, 389 (1991) CrossRefADSGoogle Scholar
  21. A. Keiling, V.E. Angelopoulos, D. Larson, R. Lin, J. McFadden, C. Carlson, J.W. Bonnell, F.S. Mozer, K.-H. Glassmeier, U. Auster, W. Magnes, S.B. Mende, H. Frey, A. Roux, O. LeContel, S. Frey, T. Phan, E. Donovan, C.T. Russell, I. Mann, W. Liu, X. Li, M. Fillingham, G. Parks, K. Shiokawa, J. Raeder, Correlation of substorm injections, auroral modulations, and ground Pi2. Geophys. Res. Lett. (2008). doi:10.1029/2008GL033969 Google Scholar
  22. G. Kettmann, P.W. Daly, Detailed determination of the orientation and motion of the plasma sheet boundary layer using energetic protons on ISEE 1 and 2: waves, curves, and flapping. J. Geophys. Res. 93, 7376 (1988) CrossRefADSGoogle Scholar
  23. Larson et al., Space Sci. Rev. (2008, this issue) Google Scholar
  24. J. Liu, V. Angelopoulos, D. Sibeck, T. Phan, J. McFadden, K.H. Glassmeier, U. Auster, Z.-Y. Pu, THEMIS observations of the dayside traveling compression region and flows surrounding flux transfer events. Geophys. Res. Lett. (2008). doi:10.1029/2008GL033673 Google Scholar
  25. R.E. Lopez, A.T.Y. Lui, A multisatellite case study of the expansion of a substorm current wedge in the near-earth magnetotail. J. Geophys. Res. 95, 8009 (1990) CrossRefADSGoogle Scholar
  26. A.T.Y. Lui, Current disruption in the Earth’s magnetosphere: Observations and models. J. Geophys. Res. 101, 13067 (1996) CrossRefADSGoogle Scholar
  27. J.P. McFadden et al., Space Sci. Rev. (2008, this issue) Google Scholar
  28. R. McPherron et al., Satellite studies of magnetospheric substorms on Aug 15th, 1968. J. Geophys. Res. 78, 3131 (1973) CrossRefADSGoogle Scholar
  29. S. Mende et al., Space Sci. Rev. (2008, this issue). doi:10.1007/s11214-008-9380-x
  30. T. Nagai, Geophys. Monogr. Series (1991) Google Scholar
  31. T. Nagai, Observed magnetic substorm signatures at synchronous altitudes. J. Geophys. Res. 87, 4405 (1982) CrossRefADSGoogle Scholar
  32. R. Nakamura et al., Spatial scale of high-speed flows in the plasma sheet observed by Cluster. Geophys. Res. Lett. 31, 9804 (2004) CrossRefGoogle Scholar
  33. S.-I. Ohtani et al., Tail current disruption in the geosynchronous region, in Magnetospheric Substorms. AGU Monogr. Ser., vol. 64 (AGU, Washington, 1991), p. 131 Google Scholar
  34. S.-I. Ohtani et al., Radial expansion of the tail current disruption during substorms: A new approach to the substorm onset region. J. Geophys. Res. 97, 3129 (1992) CrossRefADSGoogle Scholar
  35. S.-I. Ohtani, Earthward expansion of tail current disruption: dual-satellite study. J. Geophys. Res. 103, 6815 (1998) CrossRefADSGoogle Scholar
  36. W.H. Press et al., Numerical Recipies: The Art of Scientific Computing (Cambridge University Press, Cambridge, 1989) MATHGoogle Scholar
  37. T. Pytte, R.L. McPherron, S. Kokubun, The ground signatures of the expansion phase during multiple onset substorms. Planet. Space Sci. 24, 1115–1132 (1976) CrossRefADSGoogle Scholar
  38. J. Raeder, D. Larson, W. Li, L. Kepko, T. Fuller-Rowell, Open GGCM simulations for the THEMIS mission. Space Sci. Rev. (2008) Google Scholar
  39. A. Roux, O. Le Contel, C. Coillot, A. Bouabdellah, B. de la Porte, D. Alison, S. Ruocco, M.C. Vassal, The search coil magentometer for THEMIS. Space Sci. Rev. (2008) Google Scholar
  40. Runov et al., Geophys. Res. Lett. (2008, submitted) Google Scholar
  41. C.T. Russell, R.C. Elphic, Initial ISEE magnetometer results: magnetopause observations. Space Sci. Rev. 22, 681 (1978) CrossRefADSGoogle Scholar
  42. C.T. Russell, R.C. Elphic, ISEE observations of Flux Transfer Events at the dayside magnetopause. Geophys. Res. Lett. 6, 33 (1979) CrossRefADSGoogle Scholar
  43. V.A. Sergeev et al., Detection of localized, plasma-depleted flux tubes or bubbles in the midtail plasma sheet. J. Geophys. Res. 101, 10817 (1996a) CrossRefADSGoogle Scholar
  44. V.A. Sergeev et al., Comparison of UV optical signatures with the substorm current wedge as predicted by an inversion algorithm. J. Geophys. Res. 101(A2), 2615–2627 (1996b) CrossRefADSGoogle Scholar
  45. J.-H. Shue et al., Magnetopause location under extreme solar wind conditions. J. Geophys. Res. 103, 17691 (1998) CrossRefADSGoogle Scholar
  46. D.G. Sibeck et al., Space Sci. Rev. (2008, this issue) Google Scholar
  47. O. Strangeway, Geophys. Res. Lett. (2008). Manuscript in preparation Google Scholar
  48. O. Torr et al., A far ultraviolet imager for the international solar terrestrial physics mission. Space Sci. Rev. 71, 329–383 (1995) CrossRefADSGoogle Scholar
  49. N.A. Tsyganenko, A magnetospheric magnetic field model with a warped tail current sheet. Planet. Space Sci. 37, 5 (1989) CrossRefADSGoogle Scholar
  50. N.A. Tsyganenko, A model of the near magnetosphere with a dawn-dusk asymmetry: 1. Mathematical structure. J. Geophys. Res. 107(A8), 1179 (2002a) CrossRefGoogle Scholar
  51. N.A. Tsyganenko, A model of the near magnetosphere with a dawn-dusk asymmetry: 2. Parameterization and fitting to observations. J. Geophys. Res. 107(A8), 1176 (2002b) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • V. Angelopoulos
    • 1
  • D. Sibeck
    • 2
  • C. W. Carlson
    • 3
  • J. P. McFadden
    • 3
  • D. Larson
    • 3
  • R. P. Lin
    • 3
  • J. W. Bonnell
    • 3
  • F. S. Mozer
    • 3
  • R. Ergun
    • 4
  • C. Cully
    • 5
  • K. H. Glassmeier
    • 6
  • U. Auster
    • 6
  • A. Roux
    • 7
  • O. LeContel
    • 7
  • S. Frey
    • 3
  • T. Phan
    • 3
  • S. Mende
    • 3
  • H. Frey
    • 3
  • E. Donovan
    • 8
  • C. T. Russell
    • 1
  • R. Strangeway
    • 1
  • J. Liu
    • 1
  • I. Mann
    • 9
  • J. Rae
    • 9
  • J. Raeder
    • 10
  • X. Li
    • 4
  • W. Liu
    • 4
  • H. J. Singer
    • 11
  • V. A. Sergeev
    • 12
  • S. Apatenkov
    • 12
  • G. Parks
    • 3
  • M. Fillingim
    • 3
  • J. Sigwarth
    • 2
  1. 1.IGPP/ESS UCLALos AngelesUSA
  2. 2.Code 674NASA/GSFCGreenbeltUSA
  3. 3.Space Sciences LaboratoryUCBBerkeleyUSA
  4. 4.LASPUniversity of ColoradoBoulderUSA
  5. 5.Swedish Institute of Space PhysicsUpsalaSweden
  6. 6.TUBSBraunschweigGermany
  7. 7.CETP/IPSLVelizyFrance
  8. 8.Dept. of Physics and AstronomyUniversity of CalgaryCalgaryCanada
  9. 9.Dept. of PhysicsUniversity of AlbertaEdmontonCanada
  10. 10.Space Science CenterUniversity of New HampshireDurhamUSA
  11. 11.NOAA/Space Environment LaboratoryBoulderUSA
  12. 12.Institute of PhysicsUniversity of St. PetersburgSt. PetersburgRussia

Personalised recommendations