Space Science Reviews

, Volume 140, Issue 1–4, pp 23–47 | Cite as

The New Horizons Spacecraft

  • Glen H. Fountain
  • David Y. Kusnierkiewicz
  • Christopher B. Hersman
  • Timothy S. Herder
  • Thomas B. Coughlin
  • William C. Gibson
  • Deborah A. Clancy
  • Christopher C. DeBoy
  • T. Adrian Hill
  • James D. Kinnison
  • Douglas S. Mehoke
  • Geffrey K. Ottman
  • Gabe D. Rogers
  • S. Alan Stern
  • James M. Stratton
  • Steven R. Vernon
  • Stephen P. Williams
Article

Abstract

The New Horizons spacecraft was launched on 19 January 2006. The spacecraft was designed to provide a platform for seven instruments designated by the science team to collect and return data from Pluto in 2015. The design meets the requirements established by the National Aeronautics and Space Administration (NASA) Announcement of Opportunity AO-OSS-01. The design drew on heritage from previous missions developed at The Johns Hopkins University Applied Physics Laboratory (APL) and other missions such as Ulysses. The trajectory design imposed constraints on mass and structural strength to meet the high launch acceleration consistent with meeting the AO requirement of returning data prior to the year 2020. The spacecraft subsystems were designed to meet tight resource allocations (mass and power) yet provide the necessary control and data handling finesse to support data collection and return when the one-way light time during the Pluto fly-by is 4.5 hours. Missions to the outer regions of the solar system (where the solar irradiance is 1/1000 of the level near the Earth) require a radioisotope thermoelectric generator (RTG) to supply electrical power. One RTG was available for use by New Horizons. To accommodate this constraint, the spacecraft electronics were designed to operate on approximately 200 W. The travel time to Pluto put additional demands on system reliability. Only after a flight time of approximately 10 years would the desired data be collected and returned to Earth. This represents the longest flight duration prior to the return of primary science data for any mission by NASA. The spacecraft system architecture provides sufficient redundancy to meet this requirement with a probability of mission success of greater than 0.85. The spacecraft is now on its way to Pluto, with an arrival date of 14 July 2015. Initial in-flight tests have verified that the spacecraft will meet the design requirements.

Keywords

Pluto New Horizons Spacecraft Radioisotope thermoelectric generator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. U. Carlsson, in Seventh European Space Power Conf., SP-589, vol. I, 2005 Google Scholar
  2. A. Cheng et al., Space Sci. Rev. (2008, this issue). doi:10.1007/s11214-007-9271-6 Google Scholar
  3. R.D. Cockfield, in 4th Int. Energy Conversion Eng. Conf. Exhibit (IECEC), San Diego, CA, 26–29 June 2006 Google Scholar
  4. C.C. DeBoy et al., Acta Astron. 57, 540–553 (2005). doi:10.1016/j.actaastro.2005.03.051 CrossRefGoogle Scholar
  5. K. Fretz, Internal Memorandum SEA-2005-075, The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, 2005 Google Scholar
  6. B.A. Harmon, W.A. Bohne, Space Technol. Applications Int. Forum, Albuquerque, NM, 11–15 February 2007 Google Scholar
  7. M. Horanyi et al., Space Sci. Rev. (2008, this issue) Google Scholar
  8. J.F. Jensen, R.S. Bokulic, IEEE Trans. Aerosp. Electron. Syst. 36(4), 1401–1406 (2000). doi:10.1109/7.892689 CrossRefADSGoogle Scholar
  9. D. Kusnierkiewicz et al., Acta Astron. 57, 135–144 (2005). doi:10.1016/j.actaastro.2005.03.030 CrossRefGoogle Scholar
  10. D. McComas et al., Space Sci. Rev. (2008, this issue). doi:10.1007/s11214-007-9205-3 Google Scholar
  11. R.E. McNutt et al., Space Sci. Rev. (2008, this issue) Google Scholar
  12. NASA: Final Environmental Impact Statement for the New Horizons Mission, National Aeronautics and Space Administration, July 2005 Google Scholar
  13. G.K. Ottman, C.B. Hersman, in 4th Int. Energy Conversion Eng. Conf. Exhibit (IECEC), San Diego, CA, 26–29 June 2006 Google Scholar
  14. D. Reuter et al., Space Sci. Rev. (2008, this issue) Google Scholar
  15. G.D. Rogers et al., Autonomous Star Tracker Performance. Valencia Papers, 2006 Google Scholar
  16. R.C. Schulze, S. Hill, in IEEE Aerospace Conf., Big Sky, Montana, vol. 2 (2004), pp. 966–974 Google Scholar
  17. S.A. Stern, Space Sci. Rev. (2008a, this issue) Google Scholar
  18. S.A. Stern, Space Sci. Rev. (2008b, this issue). doi:10.1007/s11214-007-9295-y Google Scholar
  19. J. Stratton, in 55th Int. Astronautical Congress of the Int. Astronautical Federation, Int. Academy of Astronautics, Int. Institute of Space Law, Vancouver, Canada, 4–8 October 2004 Google Scholar
  20. L. Tyler et al., Space Sci. Rev. (2008, this issue). doi:10.1007/s11214-007-9302-3 Google Scholar
  21. H.A. Weaver et al., Space Sci. Rev. (2008, this issue) Google Scholar
  22. K.-P. Wenzel, R.G. Marsden, D.E. Page, E.J. Smith, Astron. Astrophys. Suppl. Ser. 92(2), 207–215 (1992) ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Glen H. Fountain
    • 1
  • David Y. Kusnierkiewicz
    • 1
  • Christopher B. Hersman
    • 1
  • Timothy S. Herder
    • 1
  • Thomas B. Coughlin
    • 1
  • William C. Gibson
    • 2
  • Deborah A. Clancy
    • 1
  • Christopher C. DeBoy
    • 1
  • T. Adrian Hill
    • 1
  • James D. Kinnison
    • 1
  • Douglas S. Mehoke
    • 1
  • Geffrey K. Ottman
    • 1
  • Gabe D. Rogers
    • 1
  • S. Alan Stern
    • 3
  • James M. Stratton
    • 1
  • Steven R. Vernon
    • 1
  • Stephen P. Williams
    • 1
  1. 1.Applied Physics LaboratoryThe Johns Hopkins UniversityLaurelUSA
  2. 2.Southwest Research InstituteSan AntonioUSA
  3. 3.Southwest Research InstituteBoulderUSA

Personalised recommendations