Space Science Reviews

, Volume 137, Issue 1–4, pp 83–105 | Cite as

An Overview of Earth’s Global Electric Circuit and Atmospheric Conductivity

  • Michael J. RycroftEmail author
  • R. Giles Harrison
  • Keri A. Nicoll
  • Evgeny A. Mareev


The Earth’s global atmospheric electric circuit depends on the upper and lower atmospheric boundaries formed by the ionosphere and the planetary surface. Thunderstorms and electrified rain clouds drive a DC current (∼1 kA) around the circuit, with the current carried by molecular cluster ions; lightning phenomena drive the AC global circuit. The Earth’s near-surface conductivity ranges from 10−7 S m−1 (for poorly conducting rocks) to 10−2 S m−1 (for clay or wet limestone), with a mean value of 3.2 S m−1 for the ocean. Air conductivity inside a thundercloud, and in fair weather regions, depends on location (especially geomagnetic latitude), aerosol pollution and height, and varies from ∼10−14 S m−1 just above the surface to 10−7 S m−1 in the ionosphere at ∼80 km altitude. Ionospheric conductivity is a tensor quantity due to the geomagnetic field, and is determined by parameters such as electron density and electron–neutral particle collision frequency. In the current source regions, point discharge (coronal) currents play an important role below electrified clouds; the solar wind-magnetosphere dynamo and the unipolar dynamo due to the terrestrial rotating dipole moment also apply atmospheric potential differences.

Detailed measurements made near the Earth’s surface show that Ohm’s law relates the vertical electric field and current density to air conductivity. Stratospheric balloon measurements launched from Antarctica confirm that the downward current density is ∼1 pA m−2 under fair weather conditions. Fortuitously, a Solar Energetic Particle (SEP) event arrived at Earth during one such balloon flight, changing the observed atmospheric conductivity and electric fields markedly. Recent modelling considers lightning discharge effects on the ionosphere’s electric potential (∼+250 kV with respect to the Earth’s surface) and hence on the fair weather potential gradient (typically ∼130 V m−1 close to the Earth’s surface. We conclude that cloud-to-ground (CG) lightning discharges make only a small contribution to the ionospheric potential, and that sprites (namely, upward lightning above energetic thunderstorms) only affect the global circuit in a miniscule way. We also investigate the effects of mesoscale convective systems on the global circuit.


Atmospheric electric circuit Conductivity models Fair weather observations Electrostatic modelling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. S.V. Anisimov, E.A. Mareev, N.M. Shikhova et al., Geophys. Res. Lett. 29, 2217 (2002) CrossRefADSGoogle Scholar
  2. S.V. Anisimov, E.A. Mareev, N.M. Shikhova et al., in Proc. 13th Int. Conf. on Atmos. Electr. (Beijing, China, 2007), p. 33 Google Scholar
  3. K.L. Aplin, R.A. McPheat, J. Atmos. Sol.-Terr. Phys. 67, 775 (2005) CrossRefADSGoogle Scholar
  4. K.L. Aplin, R.G. Harrison, M.J. Rycroft, Space. Sci. Rev. (2008, this issue) Google Scholar
  5. K. Bahr, F. Simpson, Practical Magnetotellurics (Cambridge University Press, Cambridge, 2005), pp. 270 Google Scholar
  6. G.A. Bazilevskaya, M.B. Krainev, V.S. Makhmutov, J. Atmos. Sol.-Terr. Phys. 62, 1577 (2000) CrossRefADSGoogle Scholar
  7. G.A. Bazilevskaya, I.G. Usoskin, E. Flückiger et al., Space. Sci. Rev. (2008, this issue). doi: 10.1007/s11214-008-9339-y Google Scholar
  8. E.A. Bering, R.H. Holzworth, B.D. Reddell et al., Adv. Space Res. 35, 1434 (2005) CrossRefADSGoogle Scholar
  9. P.A. Bedrosian, Surv. Geophys. 28, 121 (2007) CrossRefADSGoogle Scholar
  10. P.A. Bespalov, Yu.V. Chugunov, J. Atmos. Terr. Phys. 58, 601 (1996) CrossRefADSGoogle Scholar
  11. P.A. Bespalov, Yu.V. Chugunov, S.S. Davydenko, J. Atmos. Terr. Phys. 58, 605 (1996) CrossRefADSGoogle Scholar
  12. K.G. Budden, The Propagation of Radio Waves (Cambridge University Press, Cambridge, 1985), pp. 669 Google Scholar
  13. K.S. Carslaw, R.G. Harrison, J. Kirkby, Science 298, 1732 (2002) CrossRefADSGoogle Scholar
  14. J.A. Chalmers, Atmospheric Electricity, 2nd edn. (Pergamon Press, 1967) Google Scholar
  15. W.E. Cobb, H.J. Wells, J. Atmos. Sci. 27, 814 (1970) CrossRefADSGoogle Scholar
  16. S.S. Davydenko, E.A. Mareev, T.C. Marshall, M. Stolzenburg, J. Geophys. Res. 109 (2004). doi: 10.1029/2003JD003832
  17. W.H. Evans, J. Geophys. Res. 74, 939 (1969) CrossRefADSGoogle Scholar
  18. W.M. Farrell, M.D. Desch, Geophys. Res. Lett. 29 (2002). doi: 10.1029/2001GL013908
  19. M. Fullekrug, E.A. Mareev, M.J. Rycroft (eds.), Sprites, Elves and Intense Lightning Discharges (Springer, New York, 2006), pp. 398 Google Scholar
  20. O.H. Gish, Terr. Magn. Atmos. Electr. 49, 15 (1944) Google Scholar
  21. R. Gunn, J. Meteor. 11, 339 (1954) Google Scholar
  22. L.C. Hale, Adv. Space Res. 4, 175 (1984) CrossRefADSGoogle Scholar
  23. R.G. Harrison, Surv. Geophys. 25, 441 (2004a) CrossRefADSGoogle Scholar
  24. R.G. Harrison, J. Atmos. Sol.-Terr. Phys. 66, 1127 (2004b) ADSGoogle Scholar
  25. R.G. Harrison, J. Atmos. Sol.-Terr. Phys. 67, 763 (2005) CrossRefADSGoogle Scholar
  26. R.G. Harrison, Atmos. Environ. 40, 3327 (2006) CrossRefGoogle Scholar
  27. R.G. Harrison, Atmos. Res. 84, 182 (2007) CrossRefGoogle Scholar
  28. R.G. Harrison, K.L. Aplin, Atmos. Res. 79 (2007). doi: 10.1016/j.atmosres.2006.12.006
  29. R.G. Harrison, A.J. Bennett, J. Atmos. Sol.-Terr. Phys. 69, 515 (2007a) CrossRefADSGoogle Scholar
  30. R.G. Harrison, A.J. Bennett, Adv. Geosci. 13, 17 (2007b) CrossRefGoogle Scholar
  31. R.G. Harrison, K.S. Carslaw, Rev. Geophys. 41 (2003). doi: 10.1029/2002RG000114
  32. R.G. Harrison, W.J. Ingram, Atmos. Res. 76(1–4), 49 (2005) CrossRefGoogle Scholar
  33. S. Israelsson, E. Knudsen, S.V. Anisimov, J. Atmos. Terr. Phys. 56, 1545 (1994) CrossRefGoogle Scholar
  34. S. Israelsson, H. Tammet, J. Atmos. Sol.-Terr. Phys. 63, 1693 (2001) CrossRefADSGoogle Scholar
  35. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1962), pp. 641 Google Scholar
  36. B. Karlsson, H. Kornich, J. Gumbel, Geophys. Res. Lett. 34(L16806) (2007). doi: 10.1029/2007GL030282
  37. M. Kokorowski, J.G. Sample, R.H. Holzworth et al., Geophys. Res. Lett. 33(L20105) (2006). doi: 10.1029/2006GL027718
  38. T. Korja, Surv. Geophys. 28, 239 (2007) CrossRefADSGoogle Scholar
  39. W. Lowrie, Fundamentals of Geophysics, 2nd edn. (Cambridge University Press, Cambridge, 2007) Google Scholar
  40. M. Makino, T. Ogawa, J. Geophys. Res. 90(D4), 431 (1985) CrossRefGoogle Scholar
  41. E.A. Mareev, S.V. Anisimov, in Proc. 13th Int. Conf. on Atmos. Electr. (Beijing, China, 2007), p. 21 Google Scholar
  42. E.A. Mareev, S.A. Yashunin, S.S. Davydenko et al., Geophys. Res. Lett. (2007, in press) Google Scholar
  43. D.R. MacGorman, W.D. Rust, The Electrical Nature of Storms (Oxford University Press, New York, 1998), pp. 422 Google Scholar
  44. R. Markson, Bull. Am. Met. Soc. 88 (2007). doi: 10.1175/BAMS-88-2-223
  45. R.P. Mülheisen, Pure Appl. Geophys. 84, 112 (1971) CrossRefADSGoogle Scholar
  46. T. Ogawa, Y. Tanaka, T. Miura et al., J. Geomag. Geoelectr. 19, 115 (1967) Google Scholar
  47. N. Olsen, A. Kuvshinov, Earth Planets Space 56, 525 (2004) ADSGoogle Scholar
  48. V.P. Pasko, J.J. George, J. Geophys. Res. 107 (2002). doi: 10.1029/2002JA009473
  49. B.B. Phillips, Mon. Weather Rev. 95, 854 (1967) CrossRefADSGoogle Scholar
  50. V.A. Rakov, M.A. Uman, Lightning. Physics and Effects (Cambridge University Press, Cambridge, 2003), pp. 687 Google Scholar
  51. H. Rishbeth, O.K. Garriott, Introduction to Ionospheric Physics (Academic Press, New York, 1969), pp. 331 Google Scholar
  52. W.D. Rust, C.B. Moore, Quart. J. R. Met. Soc. 100, 450 (1974) CrossRefADSGoogle Scholar
  53. L.H. Ruhnke, H.F. Tammet, M. Arold, in Proc. Atmospheric Electricity, ed. by L.H. Ruhnke, J. Latham (Hampton, Virginia, A. Deepak, 1983), p. 6 Google Scholar
  54. M.J. Rycroft, in The Standard Handbook for Aeronautical and Astronautical Engineers, ed. by M. Davies (McGraw Hill, New York, 2003), pp. 16.1–16.23 Google Scholar
  55. M.J. Rycroft, J. Atmos. Sol.-Terr. Phys. 68, 445 (2006) CrossRefADSGoogle Scholar
  56. M.J. Rycroft, S. Israelsson, C. Price, J. Atmos. Sol.-Terr. Phys. 62, 1563 (2000) CrossRefADSGoogle Scholar
  57. M.J. Rycroft, A. Odzimek, N.F. Arnold et al., J. Atmos. Sol.-Terr. Phys. 69 (2007). doi: 10.1016/j.jastp.2007.09.004
  58. W.O. Schumann, Naturforsch. Z. A 7, 149 (1952) zbMATHADSMathSciNetGoogle Scholar
  59. R.W. Schunk, A.F. Nagy, Ionospheres: Physics, Plasma Physics and Chemistry (Cambridge University Press, Cambridge, 2000), pp. 554 Google Scholar
  60. F. Simoes, M. Rycroft, N. Renno et al., Space Sci. Rev. (2008, this issue) Google Scholar
  61. V.V. Smirnov, Izv. RAN, Atmos. Ocean. Phys. 51, 750 (2005) Google Scholar
  62. V.V. Smirnov, A.V. Savchenko, Atmos. Res. 82, 554 (2006) CrossRefGoogle Scholar
  63. T.H. Stix, The Theory of Plasma Waves (McGraw-Hill, New York, 1962), pp. 283 zbMATHGoogle Scholar
  64. R.B. Stull, An Introduction to Boundary Layer Meteorology (Kluwer, London, 1988), p. 22 zbMATHGoogle Scholar
  65. B.A. Tinsley, L. Zhou, J. Geophys. Res. 111(D16205) (2006). doi: 10.1029/2005JD006988
  66. I.G. Usoskin, O.G. Gladysheva, G.A. Kovaltsov, J. Atmos. Sol.-Terr. Phys. 66, 1791 (2004) CrossRefADSGoogle Scholar
  67. M. Uyeshima, Surv. Geophys. 28, 199 (2007) CrossRefADSGoogle Scholar
  68. H. Volland, in Handbook of Atmospherics, ed. by H. Volland, vol. 1 (CRC Press, Boca Raton, 1995), pp. 65–109 Google Scholar
  69. G.R. Wait, J.W. Mauchly, Transactions of the AGU, 18th Annual Meeting, 1937 Google Scholar
  70. F.J. Whipple, F.J. Scrase, Geophys Mem. 7, Meteorol. Off., London, 1936 Google Scholar
  71. E.R. Williams, in Encyclopedia of Atmospheric Sciences, ed. by J.R. Holton, J.A. Pyle, J.A. Curry (Academic Press, New York, 2002), p. 724 Google Scholar
  72. F. Yu, R.P. Turco, J. Geophys. Res. 106(D5), 4797 (2001) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Michael J. Rycroft
    • 1
    • 2
    Email author
  • R. Giles Harrison
    • 3
  • Keri A. Nicoll
    • 3
  • Evgeny A. Mareev
    • 4
  1. 1.CAESAR ConsultancyCambridgeUK
  2. 2.International Space UniversityIlkirch-GraffenstadenFrance
  3. 3.Department of MeteorologyUniversity of ReadingReadingUK
  4. 4.Institute of Applied PhysicsRussian Academy of SciencesNizhny NovgorodRussian Federation

Personalised recommendations