Space Science Reviews

, Volume 138, Issue 1–4, pp 127–145 | Cite as

Reservoirs for Comets: Compositional Differences Based on Infrared Observations

  • Michael A. DiSanti
  • Michael J. Mumma


Tracing measured compositions of comets to their origins continues to be of keen interest to cometary scientists and to dynamical modelers of Solar System formation and evolution. This requires building a taxonomy of comets from both present-day dynamical reservoirs: the Kuiper Belt (hereafter KB), sampled through observation of ecliptic comets (primarily Jupiter Family comets, or JFCs), and the Oort cloud (OC), represented observationally by the long-period comets and by Halley Family comets (HFCs). Because of their short orbital periods, JFCs are subjected to more frequent exposure to solar radiation compared with OC comets. The recent apparitions of the JFCs 9P/Tempel 1 and 73P/Schwassmann-Wachmann 3 permitted detailed observations of material issuing from below their surfaces—these comets added significantly to the compositional database on this dynamical class, which is under-represented in studies of cometary parent volatiles. This chapter reviews the latest techniques developed for analysis of high-resolution spectral observations from ∼2–5 μm, and compares measured abundances of native ices among comets. While no clear compositional delineation can be drawn along dynamical lines, interesting comparisons can be made. The sub-surface composition of comet 9P, as revealed by the Deep Impact ejecta, was similar to the majority of OC comets studied. Meanwhile, 73P was depleted in all native ices except HCN, similar to the disintegrated OC comet C/1999 S4 (LINEAR). These results suggest that 73P may have formed in the inner giant planets’ region while 9P formed farther out or, alternatively, that both JFCs formed farther from the Sun but with 73P forming later in time.


Comets Ices Composition Parent volatiles Molecular spectroscopy Infrared spectroscopy 



Jupiter Family Comet


Oort Cloud


Kuiper Belt


Halley Family Comet


Spectral Resolving Power


9P/Tempel 1


73P/Schwassmann-Wachmann 3




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M.F. A’Hearn, R.L. Millis, D.G. Schleicher, D.J. Osip, P.V. Birch, The ensemble properties of comets: Results from narrowband photometry of 85 comets, 1976-1992. Icarus 118, 223–270 (1995) CrossRefADSGoogle Scholar
  2. M.F. A’Hearn et al., Deep Impact: Excavating comet Tempel 1. Science 310, 258–265 (2005) CrossRefADSGoogle Scholar
  3. G.M. Bernstein, D.E. Trilling, R.L. Allen, M.E. Brown, M. Holman, R. Malhortra, The size distribution of trans-Neptunian bodies. Astron. J. 128, 1364–1390 (2004) CrossRefADSGoogle Scholar
  4. N. Biver, D. Bockelée-Morvan, J. Crovisier, P. Colom, F. Henry, R. Moreno, G. Paubert, D. Despois, D.C. Lis, Chemical composition diversity among 24 comets observed at radio wavelengths. Earth Moon Planets 90, 323–333 (2002) CrossRefADSGoogle Scholar
  5. N. Biver, D. Bockelée-Morvan, J. Bossier, P. Colom, J. Crovisier, A. Lecacheux, D.C. Lis, B. Parise, K. Menton, Comparison of the chemical composition of fragments B and C of comet 73P/Schwassmann-Wachmann 3 from radio observations. Bull. Am. Astron. Soc. 38(3), 484–485 (2006) ADSGoogle Scholar
  6. D. Bockelée-Morvan, J. Crovisier, The nature of the 2.8-μm emission feature in cometary spectra. Astron. Astrophys. 216, 278–283 (1989) ADSGoogle Scholar
  7. D. Bockelée-Morvan et al., New molecules found in comet C/1995 O1 (Hale-Bopp). Investigating the link between cometary and interstellar material. Astron. Astrophys. 353, 1101–1114 (2000) ADSGoogle Scholar
  8. D. Bockelée-Morvan et al., Outgassing behavior and composition of comet C/1999 S4 (LINEAR) during its disruption. Science 292, 1339–1343 (2001) CrossRefADSGoogle Scholar
  9. D. Bockelée-Morvan, J. Crovisier, M.J. Mumma, H.A. Weaver, The composition of cometary volatiles, in Comets II, ed. by M.C. Festou, H.U. Keller, H.A. Weaver (University of Arizona Press, Tucson, 2005), pp. 391–423 Google Scholar
  10. H. Boehnhardt, H. Kaufi, R. Keen, P. Carmilleri, J. Carvajal, A. Hale, Comet 73P/Schwassmann-Wachmann 3. IAUC 6274, 1995 Google Scholar
  11. H. Boehnhardt, S. Holdstock, O. Hainaut, G.P. Tozzi, S. Benetti, J. Licandro, 73P/Schwassmann-Wachmann 3—one orbit after breakup: Search for fragments. Earth, Moon, and Planets 90, 131–139 (2002) CrossRefADSGoogle Scholar
  12. B.P. Bonev, Towards a chemical taxonomy of comets: Infrared spectroscopic methods for quantitative measurements of cometary water (with an independent chapter on Mars polar science). Ph. D. thesis (U. Toledo), available on-line (2005).
  13. B.P. Bonev, M.J. Mumma, M.A. DiSanti, N. Dello Russo, K. Magee-Sauer, R.S. Ellis, D.P. Stark, A comprehensive study of infrared OH prompt emission in two comets. I. Observations and effective g-factors. Astrophys. J. 653, 774–787 (2006) CrossRefADSGoogle Scholar
  14. B.P. Bonev, M.J. Mumma, A comprehensive study of infrared OH prompt emission in two comets. II. Implications for unimolecular dissociation of H2O. Astrophys. J. 653, 788–791 (2006) CrossRefADSGoogle Scholar
  15. B.P. Bonev, M.J. Mumma, G.L. Villanueva, M.A. DiSanti, R.S. Ellis, K. Magee-Sauer, N. Dello Russo, A search for variation in the H2O ortho-para ratio and rotational temperature in the inner coma of comet C/2004 Q2 (Maccholz). Astrophys. J. 661, L97–L100 (2007) CrossRefADSGoogle Scholar
  16. B.P. Bonev, M.J. Mumma, H. Kawakita, H. Kobayashi, G.L. Villanueva, IRCS/Subaru observations of water in the inner coma of comet 73P- B/Schwassmann-Wachmann 3: Spatially resolved rotational temperatures and ortho-para ratios. Icarus (2008, in press) Google Scholar
  17. T.Y. Brooke, A.T. Tokunaga, H.A. Weaver, J. Crovisier, D. Bockelee-Morvan, D. Crisp, Detection of acetylene in the infrared spectrum of comet Hyakutake. Nature 383, 606–608 (1996) CrossRefADSGoogle Scholar
  18. S. Charnoz, A. Morbidelli, Coupling dynamical and collisional evolution of small bodies: an application to the early ejection of planetesimals from the Jupiter–Saturn region. Icarus 166, 141–156 (2003) CrossRefADSGoogle Scholar
  19. M.R. Combi, U. Fink, A critical study of molecular photodissociation and CHON grain sources for cometary C2. Astrophys. J. 484, 879–890 (1997) CrossRefADSGoogle Scholar
  20. H. Cottin, M.C. Gazeau, Y. Benilan, F. Raulin, Polyoxymethylene as parent molecule for the formaldehyde extended source in comet Halley. Astrophys. J. 556, 417–420 (2001) CrossRefADSGoogle Scholar
  21. H. Cottin, Y. Benilan, M.-C. Garzeau, F. Raulin, Origin of cometary extended sources from degradation of refractory organics on grains: polyoxymethylene as formaldehyde parent molecule. Icarus 167, 397–416 (2004) CrossRefADSGoogle Scholar
  22. J. Crovisier, The water molecule in comets: Fluorescence mechanisms and thermodynamics of the inner coma. Astron. Astrophys. 130, 361–372 (1984) ADSGoogle Scholar
  23. J. Crovisier, D. Bockelee-Morvan, E. Gerard, H. Rauer, N. Biver, P. Colom, L. Jorda, What happened to comet 73P/Schwassmann-Wachmann 3? Astron. Astrophys. 310, L17–L20 (1996) ADSGoogle Scholar
  24. J. Crovisier, T. Encrenaz, Comet Science: The Study of Remnants from the Birth of the Solar System (Cambridge University Press, UK, 2000), p. 129 Google Scholar
  25. J. Crovisier, D. Bockelee-Morvan, N. Biver, P. Colom, D. Despois, D.C. Lis, Ethylene glycol in comet C/1995 O1 (Hale-Bopp). Astron. Astrophys. 418, L35–L38 (2004) CrossRefADSGoogle Scholar
  26. J. Crovisier, The molecular composition of comets and its interrelation with other small bodies of the Solar System, in Proceedings IAU Symposium No. 229, Asteroids, Comets, Meteors 2005, ed. by D. Lazzaro, S. Ferraz-Mello, J.A. Fernandez (International Astronomical Union, 2006a), pp. 133–151 Google Scholar
  27. J. Crovisier, New trends in cometary chemistry. Faraday Disc. 133, 1–13 (2006b) CrossRefMathSciNetGoogle Scholar
  28. J. Crovisier, Cometary diversity and cometary families (2007). ArXiv:astro-ph/0703785v1
  29. N. Dello Russo, M.A. DiSanti, M.J. Mumma, K. Magee-Sauer, T.W. Rettig, Carbonyl sulfide in comets C/1996 B2 (Hyakutake) and C/1995 O1 (Hale-Bopp): Evidence for an extended source in Hale-Bopp. Icarus 135, 377–388 (1998) CrossRefADSGoogle Scholar
  30. N. Dello Russo, M.J. Mumma, M.A. DiSanti, K. Magee-Sauer, R. Novak, T.W. Rettig, Water production and release in comet C/1995 O1 Hale-Bopp. Icarus 143, 324–337 (2000) CrossRefADSGoogle Scholar
  31. N. Dello Russo, M.A. DiSanti, K. Magee-Sauer, E.L. Gibb, M.J. Mumma, R.J. Barber, J. Tennyson, Water production and release in comet 153P/Ikeya-Zhang (C/2002 C1): Accurate rotational temperature retrievals from hot-band lines near 2.9-μm. Icarus 168, 186–200 (2004) CrossRefADSGoogle Scholar
  32. N. Dello Russo, B.P. Bonev, M.A. DiSanti, M.J. Mumma, E.L. Gibb, K. Magee-Sauer, R.J. Barber, J. Tennyson, Production rates, rotational temperatures and spin temperatures in comets C/1999 H1 (Lee), C/1999 S4, and C/2001 A2. Astrophys. J. 621, 537–544 (2005) CrossRefADSGoogle Scholar
  33. N. Dello Russo, M.J. Mumma, M.A. DiSanti, K. Magee-Sauer, E.L. Gibb, B.P. Bonev, I.S. McLean, L.-H. Xu, A high-resolution infrared spectral survey of comet C/1999 H1 Lee. Icarus 184, 255–276 (2006) CrossRefADSGoogle Scholar
  34. N. Dello Russo, R.J. Vervack Jr., H.A. Weaver, N. Biver, D. Bockelée-Morvan, J. Crovisier, C.M. Lisse, Compositional homogeneity in the fragmented comet 73P/Schwassmann-Wachmann 3. Nature 448, 172–175 (2007) CrossRefADSGoogle Scholar
  35. M.A. DiSanti, M.J. Mumma, N. Dello Russo, K. Magee-Sauer, R. Novak, T.W. Rettig, Half the carbon monoxide of comet Hale-Bopp originates in nuclear ices. Nature 399, 662–665 (1999) CrossRefADSGoogle Scholar
  36. M.A. DiSanti, M.J. Mumma, N. Dello Russo, K. Magee-Sauer, Carbon monoxide production and excitation in comet C/1995 O1 (Hale-Bopp): Isolation of native and distributed CO sources. Icarus 153, 361–390 (2001) CrossRefADSGoogle Scholar
  37. M.A. DiSanti, N. Dello Russo, K. Magee-Sauer, CO, H2CO, and CH3OH in comet 2002 C1 (Ikeya-Zhang), in Proceedings Asteroids, Comets, Meteors 2002. ESA-SP, vol. 500 (Berlin, 2002), pp. 571–574 Google Scholar
  38. M.A. DiSanti, M.J. Mumma, N. Dello Russo, K. Magee-Sauer, D.M. Griep, Evidence for a dominant native source of CO emission in comet C/1996 B2 (Hyakutake). J. Geophys. Res. Planets 108, 1–15 (2003) CrossRefGoogle Scholar
  39. M.A. DiSanti, M.J. Mumma, B.P. Bonev, N. Dello Russo, K. Magee-Sauer, W.M. Anderson, D.C. Reuter, E.L. Gibb, Abundances of carbon monoxide, formaldehyde, and methyl alcohol in comets: Measuring efficiencies for conversion of CO in grain mantles. Astrobiology 5(2), 190 (2005). NAI AbSciCon 2005, Abstract # 935 Google Scholar
  40. M.A. DiSanti, B.P. Bonev, K. Magee-Sauer, N. Dello Russo, D.C. Reuter, M.J. Mumma, G.L. Villanueva, Formaldehyde emission in comet C/2002 T7 (LINEAR): Validation of a line-by-line fluorescence model at infrared wavelengths. Astrophys. J. 650, 470–483 (2006) CrossRefADSGoogle Scholar
  41. M.A. DiSanti, M.J. Mumma, B.P. Bonev, G.L. Villanueva, K. Magee-Sauer, E.L. Gibb, W.M. Anderson, Y.L. Radeva, A comparison of oxidized carbon abundances among comets. Bull. Am. Astron. Soc. 39(3), 507 (2007a) Google Scholar
  42. M.A. DiSanti, G.L. Villanueva, B.P. Bonev, K. Magee-Sauer, J.E. Lyke, M.J. Mumma, Temporal evolution of parent volatiles and dust in comet 9P/Tempel 1 resulting from the Deep Impact experiment. Icarus 187, 240–252 (2007b) CrossRefADSGoogle Scholar
  43. M.A. DiSanti, W.M. Anderson, G.L. Villanueva, B.P. Bonev, K. Magee-Sauer, E.L. Gibb, M.J. Mumma, Depleted carbon monoxide in fragment C of the Jupiter-family comet 73P/Schwassmann-Wachmann 3. Astrophys. J. 661, L101–L104 (2007c) CrossRefADSGoogle Scholar
  44. L. Dones, P.R. Weissman, H.F. Levison, M.J. Duncan, Oort Cloud formation and dynamics, in Comets II, ed. by M.C. Festou, H.U. Keller, H.A. Weaver (University of Arizona Press, Tucson, 2005), pp. 153–191 Google Scholar
  45. P. Eberhardt, Comet Halley’s gas composition and extended sources: Results from the neutral mass spectometer on Giotto. Space Sci. Rev. 90, 45–52 (1999) CrossRefADSGoogle Scholar
  46. P. Eberhardt et al., The CO and N2 abundance in comet P/Halley. Astron. Astrophys. 187, 481–484 (1987) ADSGoogle Scholar
  47. L.M. Feaga, M.F. A’Hearn, J.M. Sunshine, O. Groussin, Asymmetries in the distribution of H2O and CO2 in the inner coma of comet 9P/Tempel 1 as observed by Deep Impact. Icarus 191, 134–145 (2007) CrossRefADSGoogle Scholar
  48. P.D. Feldman, R.E. Lupu, S.R. McCandliss, H.A. Weaver, M.F. A’Hearn, M.J.S. Belton, K.J. Meech, Carbon monoxide in comet 9P/Tempel 1 before and after the Deep Impact encounter. Astrophys. J. 647, L61–L64 (2006) CrossRefADSGoogle Scholar
  49. U. Fink, M.D. Hicks, A survey of 39 comets using CCD spectroscopy. Astrophys. J. 459, 729–743 (1996) CrossRefADSGoogle Scholar
  50. E.L. Gibb, M.J. Mumma, N. Dello Russo, M.A. DiSanti, K. Magee-Sauer, Methane in Oort cloud comets. Icarus 165, 391–406 (2003) CrossRefADSGoogle Scholar
  51. E.L. Gibb, M.A. DiSanti, K. Magee-Sauer, N. Dello Russo, B.P. Bonev, M.J. Mumma, Methane and formaldehyde in comet C/2001 A2 (LINEAR): Search for heterogeneity within a comet nucleus. Icarus 188, 224–232 (2007) CrossRefADSGoogle Scholar
  52. B. Gladman, The Kuiper Belt and the solar system’s comet disk. Science 307, 71–75 (2005) CrossRefADSGoogle Scholar
  53. R. Gomes, H.F. Levison, K. Tsiganis, A. Morbidelli, Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435, 466–469 (2005) CrossRefADSGoogle Scholar
  54. T.P. Greene, A.T. Tokunaga, J.S. Carr, High resolution spectroscopy with CSHELL at the IRTF, in Infrared Astronomy with Arrays: The Next Generation, ed. by I. McLean (Kluwer, Dordrecht, 1994), p. 511 Google Scholar
  55. O. Groussin, M.F. A’Hearn, J.-Y. Li, P.C. Thomas, J.M. Sunshine, C.M. Lisse, K.J. Meech, T.L. Farnham, L.M. Feaga, W.A. Delamere, Surface temperature of the nucleus of comet 9P/Tempel 1. Icarus 187, 16–25 Google Scholar
  56. D.E. Harker, C.E. Woodward, D.H. Wooden, The dust grains from 9P/Tempel 1 before and after the encounter with Deep Impact. Science 310, 278–280 (2005) CrossRefADSGoogle Scholar
  57. K. Hiraoka, T. Sato, S. Sato, N. Sogoshi, T. Yokoyama, H. Takashima, S. Kitagawa, Formation of formaldehyde by the tunneling reaction of H with solid CO at 10 K revisited. Astrophys. J. 577, 265–270 (2002) CrossRefADSGoogle Scholar
  58. R.L. Hudson, M.H. Moore, Laboratory studies of the formation of methanol and other organic molecules by water + carbon monoxide radiolysis: Relevance to comets, icy satellites, and interstellar ices. Icarus 140, 451–461 (1999) CrossRefADSGoogle Scholar
  59. W.F. Huebner, D.C. Boice, C.M. Sharp, Polyoxymethylene in comet Halley. Astrophys. J. 320, L149–L152 (1987) CrossRefADSGoogle Scholar
  60. W.F. Irvine, F.P. Schloerb, J. Crovisier, B. Fegley Jr., M.J. Mumma, Comets: A link between interstellar and nebular chemistry, in Protostars and Planets IV, ed. by V. Mannins, A.P. Boss, S.S. Russel (University of Arizona Press, Tucson, 2000), pp. 1159–1200 Google Scholar
  61. H. Kawakita, J.-I. Watanabe, D. Kinoshita, M. Ishiguro, R. Nakamura, Saturated hydrocarbons in comet 153P/Ikeya-Zhang: Ethane, methane, and monodeuterio-methane. Astrophys. J. 590, 573 (2003) CrossRefADSGoogle Scholar
  62. H. Kawakita, J.-I. Watanabe, R. Furusho, F. Tetsuharu, D.C. Boice, Nuclear spin temperature and deuterium-to-hydrogen ratio of methane in comet C/2001 Q4 (NEAT). Astrophys. J. 590, L49–L52 (2005) CrossRefADSGoogle Scholar
  63. H. Kawakita et al., Ortho-to-para ratios of water and ammonia in comet C/2001 Q4 (NEAT): Comparison of nuclear spin temperatures of water, ammonia, and methane. Astrophys. J. 643, 1337–1344 (2006a) CrossRefADSGoogle Scholar
  64. H. Kawakita, H. Kobayashi, M.J. Mumma, Observations of organic molecules in comet 73P-B/Schwassmann-Wachmann using IRCS/Subaru. Bull. Am. Astron. Soc. 38(3), 503 (2006b) ADSGoogle Scholar
  65. J.J. Klavetter, M.F. A’Hearn, An extended source for CN jets in comet P/Halley. Icarus 107, 322–334 (1994) CrossRefADSGoogle Scholar
  66. N. Kobayashi et al., IRCS: Infrared camera and spectrograph for the Subaru Telescope, in Proc. SPIE 4008: Optical and IR Telescope Instrumentation and Detectors, ed. by M. Iye, A.F. Moorwood (2000), pp. 1056–1066 Google Scholar
  67. H. Kobayashi, H. Kawakita, M.J. Mumma, B.P. Bonev, J.-I. Watanabe, T. Fuse, Organic volatiles in comet 73P-B/Schwassmann-Wachmann 3 observed during its outburst: A clue to the formation region of the Jupiter-family comets. Astrophys. J. 668, L75–L78 (2007) CrossRefADSGoogle Scholar
  68. H.F. Levison, A. Morbidelli, The formation of the Kuiper belt by the outward transport of bodies during Neptune’s migration. Nature 426, 419–421 (2003) CrossRefADSGoogle Scholar
  69. C.M. Lisse et al., Spitzer spectral observations of the Deep Impact ejecta. Science 313, 635–640 (2006) CrossRefADSGoogle Scholar
  70. C.M. Lisse, K.E. Kraemer, J.A. Nuth III, A. Li, D. Joswiak, Comparision of the composition of the Tempel 1 ejecta to the dust in comet C/Hale-Bopp 1995 O1 and YSO HD 100546. Icarus 187, 69–86 (2007) CrossRefADSGoogle Scholar
  71. K. Magee-Sauer, M.J. Mumma, M.A. DiSanti, N. Dello Russo, T.W. Rettig, Infrared spectroscopy of the ν 3 band of hydrogen cyanide in comet C/1995 O1 Hale-Bopp. Icarus 142, 498–508 (1999) CrossRefADSGoogle Scholar
  72. K. Magee-Sauer, M.J. Mumma, M.A. DiSanti, N. Dello Russo, E.L. Gibb, B.P. Bonev, The organic composition of comet C/2001 A2 (LINEAR). Icarus 194, 347–358 (2008) CrossRefADSGoogle Scholar
  73. I.S. McLean et al., Design and development of NIRSPEC: a near-infrared echelle spectrograph for the Keck II telescope. Proc. SPIE 3354, 566–578 (1998) CrossRefADSGoogle Scholar
  74. R. Meier, P. Eberhardt, D. Krankowsky, R.R. Hodges, The extended formaldehyde source in comet P/Halley. Astron. Astrophys. 277, 677–690 (1993) ADSGoogle Scholar
  75. M.J. Mumma, H.A. Weaver, H.P. Larson, The ortho-para ratio of water vapor in comet P/Halley. Astron. Astrophys. 187, 419–429 (1987) ADSGoogle Scholar
  76. M.J. Mumma, P.R. Weissman, S.A. Stern, Comets and the origin of the Solar System: Reading the Rosetta Stone, in Protostars and Planets III, ed. by E.H. Levy, J.I. Lunine (University of Arizona Press, Tucson, 1993), pp. 1177–1252 Google Scholar
  77. M.J. Mumma, M.A. DiSanti, E.E. Roettger, A.T. Tokunaga, Ground-based detection of water in comet Shoemaker-Levy 1992 XIX: Probing cometary parent molecules by hot-band fluorescence. Bull. Am. Astron. Soc. 27, 1144 (1995) ADSGoogle Scholar
  78. M.J. Mumma, M.A. DiSanti, N. Dello Russo, M. Fomenkova, K. Magee-Sauer, C.D. Kaminski, D.X. Xie, Detection of abundant ethane and methane, along with carbon monoxide and water, in comet C/1996 B2 Hyakutake: Evidence for interstellar origin. Science 272, 1310–1314 (1996) CrossRefADSGoogle Scholar
  79. M.J. Mumma, M.A. DiSanti, N. Dello Russo, K. Magee-Sauer, T.W. Rettig, Detection of CO and ethane in comet 21P/Giacobini-Zinner: Evidence for variable chemistry in the outer solar nebula. Astrophys. J. 531, L155–L159 (2000) CrossRefADSGoogle Scholar
  80. M.J. Mumma et al., A survey of organic volatile species in comet C/1999 H1 (Lee) using NIRSPEC at the Keck Observatory. Astrophys. J. 546, 1183–1193 (2001a) CrossRefADSGoogle Scholar
  81. M.J. Mumma et al., Organic composition of C/1999 S4 (LINEAR): A comet formed near Jupiter? Science 292, 1334–1339 (2001b) CrossRefADSGoogle Scholar
  82. M.J. Mumma, M.A. DiSanti, N. Dello Russo, K. Magee-Sauer, E.L. Gibb, E.R. Novak, Remote infrared observations of parent volatiles in comets: A window on the early solar system. Adv. Space Res. 31, 2563–2575 (2003) CrossRefADSGoogle Scholar
  83. M.J. Mumma et al., Parent volatiles in comet 9P/Tempel 1: Before and after impact. Science 310, 270–274 (2005) CrossRefADSGoogle Scholar
  84. Z. Sekanina, E. Jehin, H. Boehnhardt, X. Bonfils, O. Schuetz, D. Thomas, Recurring outbursts and nuclear fragmentation of comet C/2001 A2 (LINEAR). Astrophys. J. 572, 679–684 (2002) CrossRefADSGoogle Scholar
  85. R. Schulz, A. Owens, P.M. Rodriguez-Pascual, D. Lumb, C. Erd, J.A. Stuwe, Detection of water ice grains after the Deep Impact onto comet 9P/Tempel 1. Astron. Astrophys. 448, L53–L56 (2006) CrossRefADSGoogle Scholar
  86. S.A. Stern, The evolution of comets in the Oort cloud and Kuiper belt. Nature 424, 639–642 (2003) CrossRefADSGoogle Scholar
  87. J.M. Sunshine et al., Exposed water ice deposits on the surface of comet Tempel 1. Science 311, 1453–1455 (2006) CrossRefADSGoogle Scholar
  88. A.T. Tokunaga, D.W. Toomey, J. Carr, D.N. Hall, H.W. Epps, Design for a 1–5 micron cryogenic echelle specrograph for the NASA IRTF. Proc. SPIE 1235, 131–143 (1990) CrossRefADSGoogle Scholar
  89. K. Tsinganis, R. Gomes, A. Morbidelli, H.F. Levison, Origin of the orbital architecture of the giant planets of the Solar System. Nature 435, 459–461 (2005) CrossRefADSGoogle Scholar
  90. G.L. Villanueva, B.P. Bonev, K. Magee-Sauer, M.A. DiSanti, C. Salyk, G.A. Blake, M.J. Mumma, The volatile composition of the split ecliptic comet 73P/Schwassman-Wachmann 3: A comparison of fragments C and B. Astrophys. J. 650, L87–L90 (2006) CrossRefADSGoogle Scholar
  91. N. Watanabe, A. Nagaoka, T. Shiraki, A. Kouchi, Hydrogenation of CO on pure solid CO and CO–H2O mixed ice. Astrophys. J. 616, 638–642 (2004) CrossRefADSGoogle Scholar
  92. H.A. Weaver, M.J. Mumma, H.P. Larson, D.S. Davis, Post-perihelion observations of water in comet Halley. Nature 324, 441–446 (1986) CrossRefADSGoogle Scholar
  93. H.A. Weaver, M.J. Mumma, H.P. Larson, Infrared investigation of water in comet 1P/Halley. Astron. Astrophys. 187, 411–418 (1987) ADSGoogle Scholar
  94. H.A. Weaver, G. Chin, D. Bockelee-Morvan, J. Crovisier, T.Y. Brooke, D.P. Cruikshank, T.R. Geballe, S.J. Kim, R. Meier, An infrared investigation of volatiles in comet 21P/Giacobini-Zinner. Icarus 142, 482–497 (1999) CrossRefADSGoogle Scholar
  95. H.A. Weaver et al., HST and VLT investigations of the fragments of comet C/1999 S4 (LINEAR). Science 292, 1329–1334 (2001) CrossRefADSGoogle Scholar
  96. H.A. Weaver, C.M. Lisse, M.J. Mutchler, P. Lamy, I. Toth, W. Reach, Bull. Am. Astrophys. Soc. 38(3), 490 (2006) ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Solar System Exploration DivisionNASA-Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations