Advertisement

Space Science Reviews

, 137:133 | Cite as

Physics of Electric Discharges in Atmospheric Gases: An Informal Introduction

  • Rudolf A. TreumannEmail author
  • Zbigniew Kłos
  • Michel Parrot
Article

Abstract

A short account of the physics of electrical discharges in gases is given from the viewpoint of its historical evolution and application to planetary atmospheres. As such it serves as an introduction to the papers on particular aspects of electric discharges contained in this issue, in particular in the chapters on lightning and the discharges which in the last two decades have been observed to take place in Earth’s upper atmosphere. In addition to briefly reviewing the early history of gas discharge physics we discuss the main parameters affecting atmospheric discharges like collision frequency, mean free path and critical electric field strength. Any discharge current in the atmosphere is clearly carried only by electrons. Above the lower boundary of the mesosphere the electrons must be considered magnetized with the conductivity becoming a tensor. Moreover, the collisional mean free path in the upper atmosphere becomes relatively large which lowers the critical electric field there and more easily enables discharges than at lower altitudes. Finally we briefly mention the importance of such discharges as sources for wave emission.

Keywords

Atmosphere Quasi-stationary electric fields Discharges Avalanches Sprites-jets Electrostatic waves 

References

  1. M. Aguilar-Benitez et al., Reviews of particle properties. Phys. Lett. B 239 (1990) Google Scholar
  2. E.V. Appleton, Nobel Lectures 1947, Physics 1942–1962 (Elsevier, Amsterdam, 1964), pp. 79–86 Google Scholar
  3. L.P. Babich et al., Phys. Lett. A 245, 460 (1998) CrossRefADSGoogle Scholar
  4. J.J. Balmer, Annalen Phys. Chem. 25, 80–85 (1885) ADSGoogle Scholar
  5. W. Baumjohann, R.A. Treumann, Basic Space Plasma Physics (Imperial College Press, London, 1996) Google Scholar
  6. V.A. Bernshtam, Yu.V. Ralchenko, Y. Maron, J. Phys. B: Atm. Mol. Opt. Phys. 33, 5025–5032 (2000) CrossRefADSGoogle Scholar
  7. T. Bosinger, S. Shalimov, Space Sci. Rev. (2008, this issue). doi: 10.1007/s11214-008-9333-4 Google Scholar
  8. R.J. Blakeslee, H.J. Christian, B. Vonnegut, J. Geophys. Res. 94, 13135 (1989) CrossRefADSGoogle Scholar
  9. B. Bowers, A History of Electric Light and Power (Peter Peregrinus Ltd., London, 1991) Google Scholar
  10. B. Bowers, Lightening the Day. A History of Lighting Technology (Oxford Univ. Press, Oxford, 1998) Google Scholar
  11. O. Buneman, Phys. Rev. Lett. 1, 8–9 (1958) CrossRefADSGoogle Scholar
  12. C.W. Carlson et al., Geophys. Res. Lett. 25, 2017 (1998) CrossRefADSGoogle Scholar
  13. S. Chapman, Proc. Phys. Soc. 43, 26 (1931) zbMATHCrossRefADSGoogle Scholar
  14. K.T. Compton, I. Langmuir, Rev. Mod. Phys. 2, 123–242 (1930) CrossRefADSGoogle Scholar
  15. I. Langmuir, K.T. Compton, Rev. Mod. Phys. 3, 191–258 (1931) CrossRefADSGoogle Scholar
  16. W. Crookes, Phil. Trans. R. Soc. Lond. 170, 135 (1879) CrossRefGoogle Scholar
  17. S.A. Cummer, U.S. Inan, Geophys. Res. Lett. 24, 1731–1734 (1997) CrossRefADSGoogle Scholar
  18. H. Davy, Phil. Trans. R. Soc. Lond. 97, 1–56 (1807) Google Scholar
  19. R.C. Davidson, Methods in Nonlinear Plasma Theory (Academic Press, New York, 1972) Google Scholar
  20. P. Debye, E. Hückel, Physikalische Zeitschrift 24, 185–206 (1923) Google Scholar
  21. J.R. Dwyer et al., Science 299, 694–697 (2003) CrossRefADSGoogle Scholar
  22. U. Ebert et al., Plasma Sourc. Sci. Technol. 15, S118–S129 (2006) CrossRefADSGoogle Scholar
  23. R.C. Elphic et al., Geophys. Res. Lett. 25, 2025 (1998) CrossRefADSGoogle Scholar
  24. R.E. Ergun et al., Geophys. Res. Lett. 25, 2033 (1998) CrossRefADSGoogle Scholar
  25. R.E. Ergun et al., Geophys. Res. Lett. 28, 3805 (2001) CrossRefADSGoogle Scholar
  26. R.E. Ergun et al., Phys. Plasmas 10, 454 (2003) CrossRefADSGoogle Scholar
  27. M. Faraday, Experimental Researches, Series III (1833) Google Scholar
  28. M. Faraday, Phil. Trans. R. Soc. 124, 77 (1834) CrossRefGoogle Scholar
  29. W.M. Farrell et al., J. Geophys. Res. E4 104, 3795 (1999) CrossRefADSGoogle Scholar
  30. G. Fischer et al., Space Sci. Rev. (2008, this issue) Google Scholar
  31. G.J. Fishman et al., Science 264, 1313 (1994) CrossRefADSGoogle Scholar
  32. J. Franck, G. Hertz, Verh. Dtsch. Phys. Ges. 16, 457–467 (1914) Google Scholar
  33. R.C. Franz, R.J. Nemzek, J.R. Winckler, Science 249, 48–50 (1990) CrossRefADSGoogle Scholar
  34. M. Füllekrug, S.C. Reising, Geophys. Res. Lett. 25, 4145–4148 (1998) CrossRefADSGoogle Scholar
  35. M. Füllekrug, A.C. Fraser-Smith, S.C. Reising, Geophys. Res. Lett. 25, 3497–3500 (1998) CrossRefADSGoogle Scholar
  36. M. Füllekrug, D.R. Moudry, G. Dawes, D.D. Sentman, J. Geophys. Res. 106, 20189–20194 (2001) CrossRefGoogle Scholar
  37. M. Füllekrug, M. Ignaccolo, A. Kuvshinov, Radio Sci. 41, RS2S19 (2006a). doi: 10.1029/2006RS003472 CrossRefGoogle Scholar
  38. M. Fullekrug, E.A. Mareev, M.J. Rycroft (eds.), Sprites, Elves and Intense Lightning Discharges. NATO Sci. Ser. II (Springer, Heidelberg, 2006b), p. 225 Google Scholar
  39. C.S. Gillmor, Charles Augustin Coulomb (Princeton Univ. Press, Princeton, 1971) Google Scholar
  40. A.V. Gurevich, K.P. Zybin, Phys. Usp. 44, 1119–1140 (2001) CrossRefADSGoogle Scholar
  41. A.V. Gurevich, G.M. Milikh, R. Roussel-Dupré, Phys. Lett. A 165, 463 (1992) CrossRefADSGoogle Scholar
  42. A.V. Gurevich et al., Phys. Lett. A 275, 101 (2000) CrossRefADSGoogle Scholar
  43. A.V. Gurevich et al., Phys. Lett. A 282, 180 (2001) CrossRefADSGoogle Scholar
  44. A.V. Gurevich et al., Phys. Lett. A 301, 320 (2002) CrossRefADSGoogle Scholar
  45. W. Hittorff, Wiedemannsche Annalen 7, 613 (1879) Google Scholar
  46. D.N. Holden, C.P. Munson, J.C. Devenport, Geophys. Res. Lett. 22, 889 (1995) CrossRefADSGoogle Scholar
  47. H.K. Kallmann, Phys. Rev. 90, 153 (1953) CrossRefADSGoogle Scholar
  48. D. Knight, Humpry Davy, Science and Power (Cambridge Univ. Press, Cambridge, 1992) Google Scholar
  49. I. Langmuir, Phys. Rev. 22, 357 (1923) CrossRefADSGoogle Scholar
  50. N.G. Lehtinen et al., Geophys. Res. Lett. 24, 2639 (1997) CrossRefADSGoogle Scholar
  51. M.A. Lieberman, A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley, New York, 1994) Google Scholar
  52. M.V. Lomonossov, Letter to Euler, July 5 (1748) Google Scholar
  53. T. Lyman, Nature 93, 241 (1914) CrossRefADSGoogle Scholar
  54. O. Melnik, M. Parrot, J. Geophys. Res. 103, 29107–29118 (1998). doi: 10.1029/98JA01954 CrossRefADSGoogle Scholar
  55. A. Mika, C. Haldoupis, Space Sci. Rev. (2008, this issue) Google Scholar
  56. E. Mishin, G. Milikh, Space Sci. Rev. (2008, this issue). doi: 10.1007/s11214-008-9346-z Google Scholar
  57. H.M. Mott-Smith, Nature 233, 219 (1971) CrossRefADSGoogle Scholar
  58. P.J. Nahin, Scientific Am., June issue, 122–129 (1990) Google Scholar
  59. T. Neubert, Science 300, 747–749 (2003) CrossRefGoogle Scholar
  60. D.L. Newman, M.V. Goldman, R.E. Ergun, Phys. Plasmas 9, 2337 (2002) CrossRefADSGoogle Scholar
  61. M. Parrot et al., Space Sci. Rev. (2008, this issue). doi: 10.1007/s11214-008-9347-y Google Scholar
  62. F. Paschen, Ann. Phys. 27, 537–570 (1908) CrossRefGoogle Scholar
  63. V.P. Pasko, Plasma Sources Sci. Technol. 16, S13–S29 (2007) CrossRefADSGoogle Scholar
  64. Yu.P. Raizer, Gas Discharge Physics (Springer, New York, 1997) Google Scholar
  65. S.C. Reising, U.S. Inan, T.F. Bell, Geophys. Res. Lett. 23, 3639–3642 (1996) CrossRefADSGoogle Scholar
  66. N.O. Renno, J. Kok, Space Sci. Rev. (2008, this issue) Google Scholar
  67. O.W. Richardson, Phil. Mag. 16, 740 (1908) Google Scholar
  68. O.W. Richardson, Nobel Lectures 1928 (Elsevier, 1964), pp. 224–236 Google Scholar
  69. W. Ritz, Ann. Phys. 25, 660–696 (1908) CrossRefGoogle Scholar
  70. C.J. Rodger, Rev. Geophys. 37, 317–336 (1999) CrossRefADSGoogle Scholar
  71. W.C. Roentgen, Sitzber. Physik. Med. Ges. 137, 1 (1895) Google Scholar
  72. R. Roussel-Dupré et al., Phys Rev. E 49, 2257 (1994) CrossRefADSGoogle Scholar
  73. R. Roussel-Dupré et al., J. Geophys. Res. 101, 2297 (1996) CrossRefADSGoogle Scholar
  74. R. Roussel-Dupré et al., Space Sci. Rev. (2008, this issue) Google Scholar
  75. G.B. Rybicki, A.P. Lightman, Radiative Processes in Astrophysics (Wiley, New York, 1979) Google Scholar
  76. M.J. Rycroft et al., Space Sci. Rev. (2008, this issue). doi: 10.1007/s11214-008-9368-6 Google Scholar
  77. D.D. Sentman et al., Geophys. Res. Lett. 22, 1205–1208 (1995) CrossRefADSGoogle Scholar
  78. F. Simões et al., Space Sci. Rev. (2008, this issue) Google Scholar
  79. J.J. Thomson, Phil. Mag. 44, 293 (1897) Google Scholar
  80. E. Townsend, Phil. Mag. 1, 198 (1901) Google Scholar
  81. E. Townsend, Electricity in Gases (Oxford Univ. Press., Oxford, 1915) Google Scholar
  82. R.A. Treumann, Rev. Astron. Astrophys. 13, 229–315 (2006) CrossRefADSGoogle Scholar
  83. R.A. Treumann, W. Baumjohann, Advanced Space Plasma Physics (Imperial College Press, London, 1997) zbMATHGoogle Scholar
  84. R. Watson-Watt, Sir, The Scientific Monthly, December issue, 353–358 (1950) Google Scholar
  85. C.T.R. Wilson, Proc. R. Soc. Lond. 37, 32D (1925) Google Scholar
  86. C.T.R. Wilson, Proc. R. Soc. Lond. 236, 297 (1956) ADSCrossRefGoogle Scholar
  87. Y. Yair et al., Space Sci. Rev. (2008, this issue). doi: 10.1007/s11214-008-9349-9 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Rudolf A. Treumann
    • 1
    • 2
    Email author
  • Zbigniew Kłos
    • 3
  • Michel Parrot
    • 4
  1. 1.Department of Geophysics and Environmental SciencesMunich UniversityMunichGermany
  2. 2.Department of Physics and AstronomyDartmouth CollegeHanoverUSA
  3. 3.Space Research CentrePolish Academy of SciencesWarsawPoland
  4. 4.Laboratoire de Physique et Chimie de l’EnvironnementCNRSOrleansFrance

Personalised recommendations