Advertisement

Space Science Reviews

, Volume 134, Issue 1–4, pp 141–153 | Cite as

Equilibration Processes in the Warm-Hot Intergalactic Medium

  • A. M. Bykov
  • F. B. S. Paerels
  • V. Petrosian
Article

Abstract

The Warm-Hot Intergalactic Medium (WHIM) is thought to contribute about 40–50% to the baryonic budget at the present evolution stage of the universe. The observed large scale structure is likely to be due to gravitational growth of density fluctuations in the post-inflation era. The evolving cosmic web is governed by non-linear gravitational growth of the initially weak density fluctuations in the dark energy dominated cosmology. Non-linear structure formation, accretion and merging processes, star forming and AGN activity produce gas shocks in the WHIM. Shock waves are converting a fraction of the gravitation power to thermal and non-thermal emission of baryonic/leptonic matter. They provide the most likely way to power the luminous matter in the WHIM. The plasma shocks in the WHIM are expected to be collisionless. Collisionless shocks produce a highly non-equilibrium state with anisotropic temperatures and a large differences in ion and electron temperatures. We discuss the ion and electron heating by the collisionless shocks and then review the plasma processes responsible for the Coulomb equilibration and collisional ionisation equilibrium of oxygen ions in the WHIM. MHD-turbulence produced by the strong collisionless shocks could provide a sizeable non-thermal contribution to the observed Doppler parameter of the UV line spectra of the WHIM.

Keywords

Intergalactic medium Shock waves Galaxies: clusters: general 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.R. Bell, Mon. Not. R. Astron. Soc. 353, 550 (2004) CrossRefADSGoogle Scholar
  2. R. Blandford, D. Eichler, Phys. Rep. 154, 1 (1987) CrossRefADSGoogle Scholar
  3. D. Burgess, E.A. Lucek, M. Scholer et al., Space Sci. Rev. 118, 205 (2005) CrossRefADSGoogle Scholar
  4. A.M. Bykov, Adv. Space Res. 36, 738 (2005) CrossRefADSGoogle Scholar
  5. A.M. Bykov, Y.A. Uvarov, J. Exp. Theor. Phys. 88, 465 (1999) CrossRefADSGoogle Scholar
  6. A. Bykov, K. Dolag, F. Durret, Space Sci. Rev. (2008). doi: 10.1007/s11214-008-9312-9 Google Scholar
  7. R. Cen, J.P. Ostriker, Astrophys. J. 514, 1 (1999) CrossRefADSGoogle Scholar
  8. R. Cen, T.M. Tripp, J.P. Ostriker, E.B. Jenkins, Astrophys. J. Lett. 559, L5 (2001) CrossRefADSGoogle Scholar
  9. R. Davé, R. Cen, J.P. Ostriker et al., Astrophys. J. 552, 473 (2001) CrossRefADSGoogle Scholar
  10. F. Durret, J.S. Kaastra, J. Nevalainen, T. Ohashi, N. Werner, Space Sci. Rev. (2008). doi: 10.1007/s11214-008-9313-8 Google Scholar
  11. T. Fang, G.L. Bryan, C.R. Canizares, Astrophys. J. 564, 604 (2002) CrossRefADSGoogle Scholar
  12. M.H. Farris, C.T. Russell, M.F. Thomsen, J.T. Gosling, J. Geophys. Res. 97, 19121 (1992) CrossRefADSGoogle Scholar
  13. D.C. Fox, A. Loeb, Astrophys. J. 491, 459 (1997) CrossRefADSGoogle Scholar
  14. S.R. Furlanetto, J. Schaye, V. Springel, L. Hernquist, Astrophys. J. 606, 221 (2004) CrossRefADSGoogle Scholar
  15. P. Ghavamian, J.M. Laming, C.E. Rakowski, Astrophys. J. Lett. 654, L69 (2007) CrossRefADSGoogle Scholar
  16. U. Hellsten, N.Y. Gnedin, J. Miralda-Escudé, Astrophys. J. 509, 56 (1998) CrossRefADSGoogle Scholar
  17. S. Ichimaru, M.N. Rosenbluth, Phys. Fluids 13, 2778 (1970) zbMATHCrossRefADSGoogle Scholar
  18. N.A. Inogamov, R.A. Sunyaev, Astron. Lett. 29, 791 (2003) CrossRefADSGoogle Scholar
  19. J.S. Kaastra, N. Werner, J.W.A. den Herder et al., Astrophys. J. 652, 189 (2006) CrossRefADSGoogle Scholar
  20. J.S. Kaastra, F.B.S. Paerels, F. Durret, S. Schindler, P. Richter, Space Sci. Rev. (2008). doi: 10.1007/s11214-008-9310-y Google Scholar
  21. T.B. Kaiser, Phys. Fluids 22, 593 (1979) CrossRefADSGoogle Scholar
  22. H. Kang, D. Ryu, R. Cen, J.P. Ostriker, Astrophys. J. 669, 729 (2007) CrossRefADSGoogle Scholar
  23. H. Kawahara, K. Yoshikawa, S. Sasaki et al., Publ. Astron. Soc. Jpn. 58, 657 (2006) ADSGoogle Scholar
  24. C.F. Kennel, J.P. Edmiston, T. Hada, Geophys. Monograph. Ser. 34, 1 (1985) Google Scholar
  25. K.E. Korreck, T.H. Zurbuchen, S.T. Lepri, J.M. Raines, Astrophys. J. 659, 773 (2007) CrossRefADSGoogle Scholar
  26. L.C. Lee, B.H. Wu, Astrophys. J. 535, 1014 (2000) CrossRefADSGoogle Scholar
  27. J.-J. Lee, B.-C. Koo, J. Raymond et al., Astrophys. J. Lett. 659, L133 (2007) CrossRefADSGoogle Scholar
  28. N. Lehner, B.D. Savage, P. Richter et al., Astrophys. J. 658, 680 (2007) CrossRefADSGoogle Scholar
  29. B. Lembege, J. Giacalone, M. Scholer et al., Space Sci. Rev. 110, 161 (2004) CrossRefADSGoogle Scholar
  30. A. Levinson, Mon. Not. R. Astron. Soc. 278, 1018 (1996) ADSGoogle Scholar
  31. M. Markevitch, A. Vikhlinin, Phys. Rep. 443, 1 (2007) CrossRefADSGoogle Scholar
  32. R. Mewe, in Physical Processes in Hot Cosmic Plasmas, ed. by W. Brinkmann, A.C. Fabian, F. Giovannelli (Kluwer, Dordrecht, 1990), p. 39 Google Scholar
  33. F. Nicastro, S. Mathur, M. Elvis et al., Nature 433, 495 (2005) CrossRefADSGoogle Scholar
  34. F.B.S. Paerels, S.M. Kahn, Annu. Rev. Astron. Astrophys. 41, 291 (2003) CrossRefADSGoogle Scholar
  35. D. Porquet, M. Arnaud, A. Decourchelle, Astron. Astrophys. 373, 1110 (2001) CrossRefADSGoogle Scholar
  36. J.C. Raymond, Space Sci. Rev. 99, 209 (2001) CrossRefADSGoogle Scholar
  37. P. Richter, F.B.S. Paerels, J.S. Kaastra, Space Sci. Rev. (2008). doi: 10.1007/s11214-008-9325-4 Google Scholar
  38. S.J. Schwartz, M.F. Thomsen, S.J. Bame, J. Stansberry, J. Geophys. Res. 93, 12923 (1988) CrossRefADSGoogle Scholar
  39. D.V. Sivukhin, in Reviews of Plasma Physics, vol. 4, p. 93 (1966) Google Scholar
  40. L. Spitzer, Physics of Fully Ionized Gases, 2nd edn. (Interscience, New York, 1962) Google Scholar
  41. Y. Takei, J.P. Henry, A. Finoguenov et al., Astrophys. J. 655, 831 (2007) CrossRefADSGoogle Scholar
  42. T.M. Tripp, B.D. Savage, E.B. Jenkins, Astrophys. J. Lett. 534, L1 (2000) CrossRefADSGoogle Scholar
  43. S.I. Vainshtein, A.M. Bykov, I. Toptygin, Turbulence, Current Sheets, and Shocks in Cosmic Plasma (Gordon & Breach, New York, 1993) Google Scholar
  44. A. Vladimirov, D.C. Ellison, A. Bykov, Astrophys. J. 652, 1246 (2006) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • A. M. Bykov
    • 1
  • F. B. S. Paerels
    • 2
  • V. Petrosian
    • 3
  1. 1.A.F. Ioffe Institute of Physics and TechnologySt. PetersburgRussia
  2. 2.Columbia Astrophysics Laboratory, Department of AstronomyColumbia UniversityNew YorkUSA
  3. 3.Department of PhysicsStanford UniversityStanfordUSA

Personalised recommendations