Space Science Reviews

, Volume 140, Issue 1–4, pp 217–259 | Cite as

The New Horizons Radio Science Experiment (REX)

  • G. L. Tyler
  • I. R. Linscott
  • M. K. Bird
  • D. P. Hinson
  • D. F. Strobel
  • M. Pätzold
  • M. E. Summers
  • K. Sivaramakrishnan
Article

Abstract

The New Horizons (NH) Radio Science Experiment, REX, is designed to determine the atmospheric state at the surface of Pluto and in the lowest few scale heights. Expected absolute accuracies in n, p, and T at the surface are 4⋅1019 m−3, 0.1 Pa, and 3 K, respectively, obtained by radio occultation of a 4.2 cm-λ signal transmitted from Earth at 10–30 kW and received at the NH spacecraft. The threshold for ionospheric observations is roughly 2⋅109 e m−3. Radio occultation experiments are planned for both Pluto and Charon, but the level of accuracy for the neutral gas is expected to be useful at Pluto only. REX will also measure the nightside 4.2 cm-λ thermal emission from Pluto and Charon during the time NH is occulted. At Pluto, the thermal scan provides about five half-beams across the disk; at Charon, only disk integrated values can be obtained. A combination of two-way tracking and occultation signals will determine the Pluto system mass to about 0.01 percent, and improve the Pluto–Charon mass ratio. REX flight equipment augments the NH radio transceiver used for spacecraft communications and tracking. Implementation of REX required realization of a new CIC-SCIC signal processing algorithm; the REX hardware implementation requires 1.6 W, and has mass of 160 g in 520 cm3. Commissioning tests conducted after NH launch demonstrate that the REX system is operating as expected.

Keywords

Pluto Charon New Horizons Pluto atmosphere Pluto mass Pluto thermal emission Radio science Radio occultation SCIC-CIC filter 

References

  1. R. Albrecht, C. Barbieri, H.-M. Adorf, G. Corrain, A. Gemmo, P. Greenfield, O. Hainaut, N. Hook, D.J. Tholen, J.C. Blades, W.B. Sparks, High-resolution imaging of the Pluto–Charon system with the Faint Object Camera of the Hubble Space Telescope. Astrophys. J. Lett. 435, 75 (1994) CrossRefADSGoogle Scholar
  2. W.J. Altenhoff, R. Chini, H. Hein, E. Kreysa, P.G. Mezger, C. Salter, J.B. Schraml, First radio astronomical estimate of the temperature of Pluto. Astron. Astrophys. 190, L15 (1988) ADSGoogle Scholar
  3. J.D. Anderson, J.W. Armstrong, J.K. Campbell, F.B. Estabrook, T.P. Krisher, E.L. Lau, Gravitation and celestial mechanics investigations with Galileo. Space Sci. Rev. 60, 591 (1992) CrossRefADSGoogle Scholar
  4. J.D. Anderson, P.A. Laing, E.L. Lau, A.S. Liu, M.M. Nieto, S.G. Turyshev, Indication, from Pioneer 10/11, Galileo, and Ulysses data, of an apparent anomalous, weak, long-range acceleration. Phys. Rev. Lett. 81, 2858 (1998) CrossRefADSGoogle Scholar
  5. J.D. Anderson, P.A. Laing, E.L. Lau, A.S. Liu, M.M. Nieto, S.G. Turyshev, Study of the anomalous acceleration of Pioneer 10 and 11. Phys. Rev. D. 65, 082004 (2002) CrossRefADSGoogle Scholar
  6. S.W. Asmar, J.W. Armstrong, L. Iess, P. Tortora, Spacecraft Doppler tracking: Noise budget and accuracy achievable in precision radio science observations. Radio Sci. 40, RS2001 (2005). doi:10.1029/2004RS003101 CrossRefADSGoogle Scholar
  7. R.S. Bokulic, M.J. Reinhart, C.E. Willey, R.K. Stilwell, J.E. Penn, J.R. Norton, S. Cheng, D.J. DeCicco, R.C. Schulze, Advances in deep-space telecommunications technology at the applied physics laboratory. Acta Astronautica 52, 467 (2003) CrossRefADSGoogle Scholar
  8. B.J. Buratti, R.S. Dunbar, E.F. Tedesco, J. Gibson, R.L. Marcialis, F. Wong, S. Benett, Modeling Pluto–Charon mutual events. II. CCD observations with the 60 in. telescope at Palomar Mountain. Astron. J. 110, 1405 (1995) CrossRefADSGoogle Scholar
  9. G.N. Brown Jr., W.T. Ziegler, Vapor pressure and heats of vaporization and sublimation of liquids and solids of interest in cryogenics below 1-atm pressure. Adv. Cryogen. Eng. 25, 662 (1979) Google Scholar
  10. M.W. Buie, W.M. Grundy, E.F. Young, L.A. Young, S.A. Stern, Orbits and photometry of Pluto’s satellites: Charon, S/2005 P1, and S/2005 P2. Astron. J. 132, 290 (2006) CrossRefADSGoogle Scholar
  11. D.P. Cruikshank, T.L. Roush, J.M. Moore, M.V. Sykes, T.C. Owen, M.J. Bartholomew, R.H. Brown, K.A. Tryka, The surfaces of Pluto and Charon, in Pluto and Charon, ed. by S.A. Stern, D.J. Tholen (Univ. of Ariz. Press, Tucson, 1997), p. 221 Google Scholar
  12. C. Deboy, C. Haskens, D. Duven, R. Schulze, J.R. Jensen, M. Bernacik, W. Millard, The New Horizons mission to Pluto: Advances in telecommunications system design. Acta Astronautica 57, 540 (2005) CrossRefADSGoogle Scholar
  13. J.L. Elliot, E.W. Dunham, A.S. Bosh, S.M. Slivan, L.A. Young, L.H. Wasserman, R.L. Millis, Pluto’s atmosphere. Icarus 77, 148 (1989) CrossRefADSGoogle Scholar
  14. J.L. Elliot, L.A. Young, Analysis of stellar occultation data for planetary atmospheres: I. Model fitting, with application to Pluto. Astron. J. 103, 991 (1992) CrossRefADSGoogle Scholar
  15. J.L. Elliot, A. Ates, B.A. Babcock, A.S. Bosh, M.W. Buie, K.B. Clancy, E.W. Dunham, S.S. Eikenberry, D.T. Hall, S.D. Kern, S.K. Leggett, S.E. Levine, D.-S. Moon, C.B. Olkin, D.J. Osip, J.M. Pasachoff, B.E. Penprase, M.J. Person, S. Qu, J.T. Rayner, L.C. Roberts Jr., C.V. Salyk, S.P. Souza, R.C. Stone, B.W. Taylor, D.J. Tholen, J.E. Thomas-Osip, D.R. Ticehurst, L.H. Wasserman, The recent expansion of Pluto’s atmosphere. Nature 424, 165 (2003) CrossRefADSGoogle Scholar
  16. V.R. Eshleman, Pluto’s atmosphere: Models based on refraction, inversion, and vapor-pressure equilibrium. Icarus 80, 439 (1989) CrossRefADSGoogle Scholar
  17. G. Fjeldbo, A.J. Kliore, V.R. Eshleman, The neutral atmosphere of Venus as studied with the Mariner V radio occultation experiments. Astron. J. 76, 123 (1971) CrossRefADSGoogle Scholar
  18. G.H. Fountain, D. Kusnierkeiwicz, D.B. Hersman, T. Herder, S.R. Vernon, J.M. Stratton, S. Williams, C. DeBoy, G. Rogers, J. Kinnison, The New Horizons Spacecraft. Space Sci. Rev. (2006, this issue) Google Scholar
  19. D.L. Gresh, E.A. Marouf, G.L. Tyler, P.A. Rosen, R.A. Simpson, Voyager radio occultation by Uranus rings. Icarus 78, 131 (1989) CrossRefADSGoogle Scholar
  20. W.M. Grundy, M.W. Buie, Distribution and evolution of CH4, N2, and CO ices on Pluto’s surface: 1995 to 1998. Icarus 153, 248 (2001) CrossRefADSGoogle Scholar
  21. A.A.S. Gulbis, J.L. Elliot, M.J. Person, E.R. Adams, B.A. Babcock, M. Emilio, J.W. Gangestad, S.D. Kern, E.A. Kramer, D.J. Osip, J.M. Pasachoff, S.P. Souza, T. Tuvikene, Charon’s radius and atmospheric constraints from observations of a stellar occultation. Nature 439, 48 (2006). doi:10.1038/nature04276 CrossRefADSGoogle Scholar
  22. E.M. Gurrola, Interpretation of radar data from the icy Galilean satellites and Triton, Ph.D. Dissertation, Stanford University, 1996 Google Scholar
  23. C.J. Hansen, D.A. Paige, Seasonal nitrogen cycles on Pluto. Icarus 12, 247 (1996) CrossRefADSGoogle Scholar
  24. D.P. Hinson, F.M. Flasar, A.J. Kliore, P.J. Schinder, J.D. Twicken, R.G. Herrera, Jupiter’s ionosphere: Results from the first Galileo radio occultation experiment. Geophys. Res. Lett. 24, 2107 (1997) CrossRefADSGoogle Scholar
  25. D.P. Hinson, J.D. Twicken, E.T. Karayel, Jupiter’s ionosphere: New results from Voyager 2 radio occultation measurements. J. Geophys. Res. 103, 9505 (1998) CrossRefADSGoogle Scholar
  26. D.P. Hinson, R.A. Simpson, J.D. Twicken, G.L. Tyler, F.M. Flasar, Initial results from radio occultation measurements with Mars Global Surveyor. J. Geophys. Res. 104, 1999 (1999) CrossRefGoogle Scholar
  27. D.P. Hinson, G.L. Tyler, J.L. Hollingsworth, R.J. Wilson, Radio occultation measurements of forced atmospheric waves on Mars. J. Geophys. Res. 106, 1463 (2001) CrossRefADSGoogle Scholar
  28. E.B. Hogenauer, An economical class of digital filters for decimation and interpolation. IEEE Trans. Acoust., Speech, Signal Process. ASSP-29, 155 (1981) CrossRefGoogle Scholar
  29. W.B. Hubbard, D.M. Hunten, S.W. Dieters, K.M. Hill, R.D. Watson, Occultation evidence for an atmosphere on Pluto. Nature 336, 452 (1988) CrossRefADSGoogle Scholar
  30. W.B. Hubbard, R.V. Yelle, J.I. Lunine, Nonisothermal Pluto atmosphere models. Icarus 84, 1 (1990) CrossRefADSGoogle Scholar
  31. J.F. Jensen, R.S. Bokulic, Experimental verification of noncoherent doppler tracking at the deep space network. IEEE Trans. Aero. Elect. Syst. 36, 1401 (2000) CrossRefADSGoogle Scholar
  32. D.C. Jewitt, Heat from Pluto. Astron. J. 107, 372 (1994) CrossRefADSGoogle Scholar
  33. J. Kaiser, R. Hamming, Sharpening the response of a symmetric nonrecursive filter by multiple use of the same filter. IEEE Trans. Acoust., Speech, Signal Process. 25, 415 (1977) MATHCrossRefGoogle Scholar
  34. E.T. Karayel, D.P. Hinson, Sub-Fresnel-scale vertical resolution in atmospheric profiles from radio occultation. Radio Sci. 32, 411 (1997) CrossRefADSGoogle Scholar
  35. V.A. Krasnopolsky, D.P. Cruikshank, Photochemistry of Pluto’s atmosphere and ionosphere near perihelion. J. Geophys. Res. 104, 21979 (1999) CrossRefADSGoogle Scholar
  36. A.Y. Kwentus, Z. Jiang, A.N. Willson Jr., Application of filter sharpening to cascaded integrator-comb decimation filters. IEEE Trans. Signal Process. 45, 457 (1997) CrossRefADSGoogle Scholar
  37. E. Lellouch, R. Laureijs, B. Schmitt, E. Quirico, C. de Bergh, J. Crovisier, A. Coustenis, Pluto’s non-isothermal surface. Icarus 147, 220 (2000) CrossRefADSGoogle Scholar
  38. G.F. Lindal, G.E. Wood, H.B. Hotz, D.N. Sweetnam, V.R. Eshleman, G.L. Tyler, The atmosphere of Titan: An analysis of the Voyager 1 radio occultation measurements. Icarus 53, 348 (1983) CrossRefADSGoogle Scholar
  39. E.A. Marouf, G.L. Tyler, P.A. Rosen, Profiling Saturn’s rings by radio occultation. Icarus 68, 120 (1986) CrossRefADSGoogle Scholar
  40. W.B. McKinnon, J.I. Lunine, D. Banfield, Origin and evolution of Triton, in Neptune and Triton, ed. by D.P. Cruikshank (Univ. of Ariz. Press, Tucson, 1995), p. 807 Google Scholar
  41. R.L. Millis, L.H. Wassermann, O.G. Franz, R.A. Nye, J.L. Elliot, E.W. Dunham, A.S. Bosh, L.A. Young, S.M. Slivan, A.C. Gilmore, P.M. Kilmartin, W.H. Allen, R.D. Watson, S.W. Dieters, K.M. Hill, A.B. Gills, G. Blow, J. Priestley, W.M. Kissling, W.S.G. Walker, B.G. Marino, D.G. Dix, A.A. Page, J.E. Ross, H.P. Avey, D. Hickey, H.D. Kennedy, K.A. Mottram, G. Moyland, T. Murphy, C.C. Dahn, A.R. Klemola, Pluto’s radius and atmosphere: Results from the entire 9 June 1988 occultation data set. Icarus 105, 282 (1993) CrossRefADSGoogle Scholar
  42. T.C. Owen, T.L. Roush, D.P. Cruikshank, J.L. Elliot, L.A. Young, C. de Bergh, B. Schmitt, T.R. Geballe, R.H. Brown, M.J. Bartholomew, Surface ices and the atmospheric composition of Pluto. Science 261, 745 (1993) CrossRefADSGoogle Scholar
  43. M. Pätzold, B. Husler, A. Wennmacher, K. Aksnes, J.D. Anderson, S.W. Asmar, J.-P. Barriot, H. Boehnhardt, W. Eidel, F.M. Neubauer, O. Olsen, J. Schmitt, J. Schwinger, N. Thomas, Gravity field determination of a Comet Nucleus: Rosetta at P/Wirtanen. Astron. Astrophys. 375, 651 (2001) CrossRefADSGoogle Scholar
  44. M.J. Person, J.L. Elliot, A.A.S. Gulbis, J.M. Pasachoff, B.A. Babcock, S.P. Souza, J. Gangestad, Charon’s radius and density from the combined data sets of the 2005 July 11 occultatation. Astron. J. 132, 1540 (2006) CrossRefGoogle Scholar
  45. K. Reinsch, V. Burwitz, M.C. Festou, Albedo maps of Pluto and improved physical parameters of the Pluto-Charon system. Icarus 108, 209 (1994) CrossRefADSGoogle Scholar
  46. B. Sicardy, T. Widemann, E. Lellouch, C. Veillet, J.-C. Cuillandre, F. Colas, F. Roques, W. Beisker, M. Kretlow, A.-M. Lagrange, E. Gendron, F. Lacombe, J. Lecacheux, C. Birnbaum, A. Fienga, C. Leyrat, A. Maury, E. Raynaud, S. Renner, M. Schultheis, K. Brooks, A. Delsanti, O.R. Hainaut, R. Gilmozzi, C. Lidman, J. Spyromilio, M. Rapaport, P. Rosenzweig, O. Naranjo, L. Porras, F. Diaz, H. Calderon, S. Carrillo, A. Carvajal, E. Recalde, L. Gaviria Cavero, C. Montalvo, D. Barria, R. Campos, R. Duffard, H. Levato, Large changes in Pluto’s atmosphere as revealed by recent stellar occultations. Nature 424, 168 (2003) CrossRefADSGoogle Scholar
  47. B. Sicardy, A. Bellucci, E. Gendron, F. Lacombe, S. Lacour, J. Lecacheux, E. Lellouch, S. Renner, S. Pau, F. Roques, T. Widemann, F. Colas, F. Vachier, R. Vieira Martins, N. Ageorges, O. Hainaut, O. Marco, W. Beisker, E. Hummel, C. Feinstein, H. Levato, A. Maury, E. Frappa, B. Gaillard, M. Lavayssiere, M. Di Sora, F. Mallia, G. Masi, R. Behrend, F. Carrier, O. Mousis, P. Rousselot, A. Alvarez-Candal, D. Lazzaro, C. Veiga, A.H. Andrei, M. Assafin, D.N. da Silva Neto, C. Jacques, E. Pimentel, D. Weaver, J.-F. Lecampion, F. Doncel, T. Momiyama, G. Tancredi, Charon’s size and an upper limit on its atmosphere from a stellar occultation. Nature 439, 52 (2006) CrossRefADSGoogle Scholar
  48. D.E. Smith, M.T. Zuber, H.V. Frey, J.B. Garvin, J.W. Head, D.O. Muhleman, G.H. Pettengill, R.J. Phillips, S.C. Solomon, H.J. Zwally, W.B. Banerdt, T.C. Duxbury, M.P. Golombek, F.G. Lemoine, G.A. Neumann, D.D. Rowlands, O. Aharonson, P.G. Ford, A.B. Ivanov, P.J. McGovern, J.B. Abshire, R.S. Afzal, X. Sun, Mars orbiter laser altimeter: Experiment summary after the first year of global mapping of Mars. J. Geophys. Res. 106, 23689 (2001) CrossRefADSGoogle Scholar
  49. J.R. Spencer, J.A. Stansberry, L.M. Trafton, E.F. Young, R.P. Binzel, S.K. Croft, Volatile transport, seasonal cycles, and atmospheric dynamics on Pluto, in Pluto and Charon, ed. by S.A. Stern, D.J. Tholen (Univ. of Ariz. Press, Tucson, 1997), p. 435 Google Scholar
  50. E.M. Standish Jr., No dynamical evidence in the optical observations. Astron. J. 105, 2000 (1993) CrossRefADSGoogle Scholar
  51. J.A. Stansberry, J.I. Lunine, W.B. Hubbard, R.V. Yelle, D. M Hunten, Mirages and the nature of Pluto’s atmosphere. Icarus 111, 503 (1994) CrossRefADSGoogle Scholar
  52. D.F. Strobel, X. Zhu, M.E. Summers, M. H Stevens, On the vertical thermal structure of Pluto’s atmosphere. Icarus 120, 266 (1996) CrossRefADSGoogle Scholar
  53. M.E. Summers, D.F. Strobel, G.R. Gladstone, 1997, Chemical models of Pluto’s atmosphere, in Pluto and Charon, ed. by S.A. Stern, D.J. Tholen (Univ. of Ariz. Press, Tucson, 1997), p. 391 Google Scholar
  54. D.J. Tholen, M.W. Buie, Further analysis of Pluto–Charon mutual event observations. Bull. Am. Astron. Soc. 22, 1129 (abstract) (1990) Google Scholar
  55. D.J. Tholen, M.W. Buie, Bulk properties of Pluto and Charon, in Pluto and Charon, ed. by S.A. Stern, D.J. Tholen (Univ. of Ariz. Press, Tucson, 1997), p. 193 Google Scholar
  56. K.A. Tryka, R.H. Brown, D.P. Cruikshank, T.C. Owen, T.R. Geballe, C. DeBergh, Temperature of nitrogen ice on Pluto and its implications for flux measurements. Icarus 112, 513 (1994) CrossRefADSGoogle Scholar
  57. G.L. Tyler, Radio propagation experiments in the outer solar system with Voyager. Proc. IEEE 75, 1404 (1987) CrossRefADSGoogle Scholar
  58. G.L. Tyler, D.N. Sweetnam, J.D. Anderson, S.E. Borutzki, J.K. Campbell, V.R. Eshleman, D.L. Gresh, E.M. Gurrola, D.P. Hinson, N. Kawashima, E.R. Kursinski, G.S. Levy, G.F. Lindal, J.R. Lyons, E.A. Marouf, P.A. Rosen, R.A. Simpson, G.E. Wood, Voyager radio science observations of Neptune and Triton. Science 246, 1466 (1989) CrossRefADSGoogle Scholar
  59. G.L. Tyler, G. Balmino, D.P. Hinson, W.L. Sjogren, D.E. Smith, R.A. Simpson, S.W. Asmar, P. Priest, J.D. Twicken, Radio science observations with Mars Global Surveyor: Orbit insertion through one Mars year in mapping orbit. J. Geophys. Res. 106, 23,327 (2001) CrossRefADSGoogle Scholar
  60. R.V. Yelle, J.L. Elliot, Atmospheric structure and composition, in Pluto and Charon, ed. by S.A. Stern, D.J. Tholen (Univ. of Ariz. Press, Tucson, 1997), p. 347 Google Scholar
  61. E.F. Young, R.P. Binzel, A new determination of radii and limb parameters for Pluto and Charon from mutual event lightcurves. Icarus 108, 219 (1994) CrossRefADSGoogle Scholar
  62. H. Zirin, B.M. Baumert, G.J. Hurford, The microwave brightness temperature spectrum of the quiet Sun. Astrophys. J. 370, 779 (1991) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • G. L. Tyler
    • 1
  • I. R. Linscott
    • 1
  • M. K. Bird
    • 2
  • D. P. Hinson
    • 1
  • D. F. Strobel
    • 3
  • M. Pätzold
    • 4
  • M. E. Summers
    • 5
  • K. Sivaramakrishnan
    • 1
  1. 1.Dept. of Electrical EngineeringStanfordUSA
  2. 2.Argelander-Institut für AstronomieUniversität BonnBonnGermany
  3. 3.Johns Hopkins UniversityBaltimoreUSA
  4. 4.Abt. PlanetenforschungRheinisches Institut für Umweltforschung an der Universität zu KölnKölnGermany
  5. 5.Dept. of Physics and AstronomyGeorge Mason UniversityFairfaxUSA

Personalised recommendations