Space Science Reviews

, Volume 136, Issue 1–4, pp 437–486 | Cite as

The Plasma and Suprathermal Ion Composition (PLASTIC) Investigation on the STEREO Observatories

  • A. B. Galvin
  • L. M. Kistler
  • M. A. Popecki
  • C. J. Farrugia
  • K. D. C. Simunac
  • L. Ellis
  • E. Möbius
  • M. A. Lee
  • M. Boehm
  • J. Carroll
  • A. Crawshaw
  • M. Conti
  • P. Demaine
  • S. Ellis
  • J. A. Gaidos
  • J. Googins
  • M. Granoff
  • A. Gustafson
  • D. Heirtzler
  • B. King
  • U. Knauss
  • J. Levasseur
  • S. Longworth
  • K. Singer
  • S. Turco
  • P. Vachon
  • M. Vosbury
  • M. Widholm
  • L. M. Blush
  • R. Karrer
  • P. Bochsler
  • H. Daoudi
  • A. Etter
  • J. Fischer
  • J. Jost
  • A. Opitz
  • M. Sigrist
  • P. Wurz
  • B. Klecker
  • M. Ertl
  • E. Seidenschwang
  • R. F. Wimmer-Schweingruber
  • M. Koeten
  • B. Thompson
  • D. Steinfeld
Open Access
Article

Abstract

The Plasma and Suprathermal Ion Composition (PLASTIC) investigation provides the in situ solar wind and low energy heliospheric ion measurements for the NASA Solar Terrestrial Relations Observatory Mission, which consists of two spacecraft (STEREO-A, STEREO-B). PLASTIC-A and PLASTIC-B are identical. Each PLASTIC is a time-of-flight/energy mass spectrometer designed to determine the elemental composition, ionic charge states, and bulk flow parameters of major solar wind ions in the mass range from hydrogen to iron. PLASTIC has nearly complete angular coverage in the ecliptic plane and an energy range from ∼0.3 to 80 keV/e, from which the distribution functions of suprathermal ions, including those ions created in pick-up and local shock acceleration processes, are also provided.

Keywords

STEREO Solar wind Plasma Suprathermal Composition Time-of-flight spectrometer Coronal mass ejections Multipoint spacecraft observations 

References

  1. M.R. Aellig, H. Grünwaldt, P. Bochsler, S. Hefti, P. Wurz, R. Kallenbach, F.M. Ipavich, A.B. Galvin, R. Bodmer, D. Hovestadt, M. Hilchenbach et al., Solar wind minor ion charge states observed with high time resolution with SOHO/ CELIAS/ CTOF, in Correlated Phenomena at the Sun, in the Heliosphere and in Geospace. ESA SP-415, 27–31 (1997) Google Scholar
  2. F. Allegrini, The PLASTIC sensor on STEREO: Design of the entrance system/energy analyzer and numerical simulations of solar wind measurements. Ph.d. thesis, University of Bern, Switzerland, 2002 Google Scholar
  3. M.J. Aschwanden et al., Theoretical modeling for the STEREO mission. Space Sci. Rev. (2007, this issue). doi:10.1007/s11214-006-9027-8 Google Scholar
  4. S.J. Bame, Solar wind minor ions—recent observations, in Solar Wind Five, NASA Conf. Publ. CP-2280, ed. by M. Neugebauer (NASA Scientific and Technical Information Branch, 1983), p. 573 Google Scholar
  5. M.G. Baring, K.W. Ogilvie, D.C. Ellison, R.J. Forsyth, Acceleration of solar wind ions by nearby interplanetary shocks: Comparison of Monte Carlo simulations with Ulysses observations. Astrophys. J. 476, 889–902 (1997) CrossRefADSGoogle Scholar
  6. D. Biesecker, D.F. Webb, O.C.St. Cyr, STEREO space weather and the space weather Beacon. Space Sci. Rev. (2007, this issue). doi:10.1007/s11214-007-9165-7 Google Scholar
  7. L.M. Blush, F. Allegrini, P. Bochsler, H. Daoudi, A. Galvin, R. Karrer, L. Kistler, B. Klecker, E. Moebius, A. Optiz, M. Popecki, B. Thompson, R.F. Wimmer-Schweingruber, P. Wurz, Development and calibration of major components for the STEREO/PLASTIC (plasma and suprathermal ion composition) instrument. Adv. Space Res. 36, 1544–1556 (2005) CrossRefADSGoogle Scholar
  8. L.F. Burlaga, E. Sittler, F. Mariani, R. Schwenn, Magnetic loop behind an interplanetary shock: Voyager, Helios and IMP 8 observations. J. Geophys. Res. 86, 6673–6684 (1981) CrossRefADSGoogle Scholar
  9. L.F. Burlaga, Magnetic clouds: Constant alpha force-free configurations. J. Geophys. Res. 93, 7217 (1988) CrossRefADSGoogle Scholar
  10. L.F. Burlaga, Large scale fluctuations, in Interplanetary Magnetohydrodynamics (Oxford University Press, New York, 1995), pp. 169–200 Google Scholar
  11. J.-L. Bougeret, K. Goetz, M.L. Kaiser et al., S/WAVES: The radio and plasma wave investigation on the STEREO mission. Space Sci. Rev. (2007, this issue) Google Scholar
  12. H.V. Cane, T.T. von Rosenvinge, C.M.S. Cohen, R.A. Mewaldt, Two components in major solar particle events. Geophys. Res. Lett. 30(12), SEP 5-1 (2003) CrossRefGoogle Scholar
  13. K. Chotoo, N.A. Schwadron, G.M. Mason, T.H. Zurbuchen, G. Gloeckler, A. Posner, L.A. Fisk, A.B. Galvin, D.C. Hamilton, M.R. Collier, The suprathermal seed population for corotating interaction regions at 1 AU deduced from composition and spectra of H+, He++, and He+ observed on Wind. J. Geophys. Res. 105, 23107–23122 (2000) CrossRefADSGoogle Scholar
  14. M.R. Collier, R.A. Lundgren, D.C. Hamilton, Channeling in ion implanted silicon solid-state detectors, University of Maryland Technical Report, PP 89-001, Dept. of Physics and Astronomy, and the Institute for Physical Science and Technology, University of Maryland, 1988 Google Scholar
  15. N. Crooker, J.T. Gosling, E.J. Smith, C.T. Russell, A bubblelike coronal mass ejection flux rope in the solar wind, in Physics of Magnetic Flux Ropes, ed. by C.T. Russell, E.R. Priest, L.C. Lee. Geophys. Monogr. Ser., vol. 58 (AGU, Washington, 1990), pp. 365 Google Scholar
  16. S.R. Cranmer et al., An empirical model of a polar coronal hole at solar minimum. Astrophys. J. 511, 481–501 (1999) CrossRefADSGoogle Scholar
  17. D.A. Dahl, SIMION 3D Version 6.0 User’s Manual (Ion Source Software, Idaho National Engineering Laboratory, 1995) Google Scholar
  18. M.H. Denton, J.E. Borovsky, R.M. Skoug, M.F. Thomsen, B. Lavraud, M.G. Henderson, R.L. McPherron, J.C. Zhang, M.W. Liemohn, Geomagnetic storms driven by ICME- and CIR-dominated solar wind. J. Geophys. Res. 111, A07S07 (2006). doi:10.1029/2005JA011436 CrossRefGoogle Scholar
  19. M.I. Desai, G.M. Mason, J.R. Dwyer, J.E. Mazur, C.W. Smith, R.M. Skoug, Acceleration of 3He nuclei at interplanetary shocks. Astrophys. J. 553(1), L89–L92 (2001) CrossRefADSGoogle Scholar
  20. J.R. Dwyer, G.M. Mason, J.E. Mazur, J.R. Jokipii, T.T. von Rosenvinge, R.P. Lepping, Perpendicular transport of low energy corotating interaction region-associated nuclei. Astrophys. J. 490, L115–L118 (1997) CrossRefADSGoogle Scholar
  21. H. Ewald, H. Liebl, Der Astigmatismus des Toroidkondensators. Z. Naturforschung 10a, 872–876 (1955) ADSGoogle Scholar
  22. C.J. Farrugia et al., A reconnection layer associated with a magnetic cloud. Adv. Space Res. 28(5), 759 (2001) CrossRefADSGoogle Scholar
  23. C.J. Farrugia et al., Wind and ACE observations during the great flow of 1–4 May 1998: Relation to solar activity and implications for the magnetosphere. J. Geophys. Res. 107(A9), SSH 3–1 (2002). doi:10.1029/2001JA000188 CrossRefGoogle Scholar
  24. C.J. Farrugia et al., Evolution of magnetic clouds from 0.3 AU to 1 AU: A joint Helios-Wind Investigation. Sol. Wind 11, 723–726 (2005a) Google Scholar
  25. C.J. Farrugia et al., Cross-correlation of interplanetary parameters for large (∼450 Re) separation: Dependence on interplanetary structure. Sol. Wind 11, 719 (2005b) Google Scholar
  26. C.J. Farrugia etal., Interplanetary coronal mass ejection and ambient interplanetary magnetic field correlations during the Sun–Earth connection events of October–November 2003. J. Geophys. Res. 110 (2005c). doi:10.1029/2004JA10968
  27. T.G. Forbes et al., CME theory and models. Space Sci. Rev. 123, 251–302 (2006) CrossRefADSGoogle Scholar
  28. A.B. Galvin, F.M. Ipavich, G. Gloeckler, D. Hovestadt, S. Bame, B. Klecker, M. Scholer, B.T. Tsurutani, Solar wind iron charge states preceding a driver plasma. J. Geophys. Res. 92(A11), 12069–12081 (1987) CrossRefADSGoogle Scholar
  29. A.B. Galvin, G. Gloeckler, F.M. Ipavich, C.M. Shafer, J. Geiss, K. Ogilvie, Solar wind composition measurements by the Ulysses SWICS experiment during transient solar wind flows. Adv. Space Res. 13(6), 75–78 (1993) CrossRefADSGoogle Scholar
  30. A.B. Galvin, Minor ion composition in CME-related solar wind, in Coronal Mass Ejections, Geophysical Monograph 99, ed. by N. Crooker, J.A. Joselyn, J. Feynman (American Geophysical Union, 1997), pp. 253–260 Google Scholar
  31. A.B. Galvin, J.L. Kohl, Whole Sun Month at solar minimum: An introduction. J. Geophys. Res. 104(A5), 9673–9678 (1999). doi:10.1029/1999JA900008 CrossRefADSGoogle Scholar
  32. A.G. Ghielmetti, H. Balsiger, R. Baenninger, P. Eberhardt, J. Geiss, D.T. Young, Calibration system for satellite and rocket-borne ion mass spectrometers in the energy range from 5 eV/charge to 100 keV/charge. Rev. Sci. Instrum. 54(4), 425–436 (1983) CrossRefADSGoogle Scholar
  33. S.E. Gibson, Global solar wind structure from solar minimum to solar maximum: Sources and evolution. Space Sci. Rev. 97(1/4), 69 (2001) CrossRefADSGoogle Scholar
  34. G. Gloeckler, J. Geiss, H. Balsiger, P. Bedini, J.C. Cain, J. Fischer, L. Fisk, A.B. Galvin, F. Gliem, D.C. Hamilton, J.V. Hollweg, F.M. Ipavich, R. Joos, S. Livi, R. Lundgren, J.F. McKenzie, U. Mall, K.W. Ogilvie, F. Ottens, W. Rieck, E.O. Tums, R. von Steiger, W. Weiss, B. Wilken, The solar wind ion composition spectrometer. Astron. Astrophys. Suppl. Ser. 92, 267 (1992) ADSGoogle Scholar
  35. G. Gloeckler et al., The solar wind and suprathermal ion composition investigation on the WIND spacecraft. Space Sci. Rev. 71, 79–124 (1995) CrossRefADSGoogle Scholar
  36. G. Gloeckler, J. Geiss, Interstellar and inner source pickup ions observed by SWICS on Ulysses. Space Sci. Rev. 86, 127 (1998) CrossRefADSGoogle Scholar
  37. G. Gloeckler, P. Bedini, P. Bochsler, L.A. Fisk, J. Geiss, F.M. Ipavich, J. Cain, J. Fischer, R. Kallenbach, J. Miller, O. Tums, R. Wimmer, Investigation of the composition of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS on the ACE spacecraft. Space Sci. Rev. 86, 497 (1998) CrossRefADSGoogle Scholar
  38. G. Gloeckler et al., Unusual composition of the solar wind in the 2–3 May 1998 CME observed with SWICS on ACE. Geophys. Res. Lett. 26(2), 157 (1999) CrossRefADSGoogle Scholar
  39. G. Gloeckler, L.A. Fisk, L.J. Lanzerotti, Acceleration of solar wind and pickup ions by shocks, in Proceedings of the Solar Wind 11 / SOHO 16, “Connecting Sun and Heliosphere” Conference (ESA SP-592), published on CDROM, 17, 2005a Google Scholar
  40. G. Gloeckler, L.A. Fisk, L.J. Lanzerotti, Pickup ions upstream and downstream of shocks. AIP Conf. Proc. 781, 252–260 (2005b). doi:10.1063/1.2032705 CrossRefADSGoogle Scholar
  41. H. Goldstein, On the field configuration in magnetic clouds, in Solar Wind Five. NASA Conf. Publ. 2280, 1983, p. 731 Google Scholar
  42. M. Gonin, R. Kallenbach, P. Bochsler, A. Buergi, Charge exchange of low energy particles passing through thin carbon foils: Dependence on foil thickness and charge state yields of Mg, Ca, Ti, Cr and Ni. Nucl. Instr. Methods B 101, 313–320 (1995) CrossRefADSGoogle Scholar
  43. M. Hellsing, L. Karlsson, H.-O. Andren, H. Norden, Performance of a microchannel plate ion detector in the energy range 3–25 keV. J. Phys. E.: Sci. Instrum. 18, 920–925 (1985) CrossRefADSGoogle Scholar
  44. D. Hovestadt, M. Hilchenbach, A. Buergi, B. Klecker, P. Laeverenz, M. Scholer, H. Gruenwaldt, W.I. Axford, S. Livi, E. Marsch, B. Wilken, H.P. Winterhoff, F.M. Ipavich, P. Bedini, M.A. Coplan, A.B. Galvin, G. Gloeckler, P. Bochsler, H. Balsiger, J. Fischer, J. Geiss, R. Kallenbach, P. Wurz, K.-U. Reiche, F. Gliem, D.L. Judge, H.S. Ogawa, K.C. Hsieh, E. Moebius, M.A. Lee, G.G. Managadze, M.I. Verigin, M. Neugebauer, CELIAS: The charge, element, and isotope analysis system for SOHO. Sol. Phys. 162, 441 (1995) CrossRefADSGoogle Scholar
  45. R. Howard et al., Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) (2007, this issue) Google Scholar
  46. Q. Hu, B.U.O. Sonnerup, Reconstruction of magnetic clouds in the solar wind: Orientation and configuration. J. Geophys. Res. 107 (2002). doi:10.1029/2001JA000293
  47. A.J. Hundhausen, The origin and propagation of coronal mass ejections, in Proc. 6th Intl. Solar Wind Conf., ed. by V.J. Pizzo, T.E. Holzer, D.G. Sime (NCAR Technical Note NCAR/TN-306+Proc.), 1988, 1, 131 Google Scholar
  48. L. Janoo, C.J. Farrugia, R.B. Torbert, J.M. Quinn et al., Field and flow perturbations in the October 18–19, 1995, magnetic cloud. J. Geophys. Res. 103, 17249 (1998) CrossRefADSGoogle Scholar
  49. S.W. Kahler, N.R. Sheeley Jr., R.A. Howard, D.J. Michels, M.J. Koomen, R.E. McGuire, T.T. von Rosenvinge, D.V. Reames, Associations between coronal mass ejections and solar energetic proton events. J. Geophys. Res. 89, 9683–9693 (1984) CrossRefADSGoogle Scholar
  50. M. Kaiser, T.A. Kucera, J.M. Davila, O.C. St. Cyr, The STEREO mission: An overview. Space Sci. Rev. (2007, this issue). doi:10.1007/s11214-007-9277-0 Google Scholar
  51. R. Karrer, Ion-Optical Calibration of STEREO/PLASTIC, Ph.D. Dissertation, University of Bern, 2007 Google Scholar
  52. J. Kawata, K. Ohya, I. Mori, A Monte Carlo simulation of ion-induced kinetic electron emission with a stochastic excitation of electrons in solids. Jpn. J. Appl. Phys. 30, 3510–3515 (1991), doi:10.1143/JJAP.30.3510 CrossRefADSGoogle Scholar
  53. B. Klecker et al., Energetic particle observations. Space Sci. Rev. 123, 217–250 (2006). doi:10.1007/s11214-006-9018-9 CrossRefADSGoogle Scholar
  54. K.-L. Klein, G. Trottet, The origin of solar energetic particle events: Coronal acceleration versus shock wave acceleration. Space Sci. Rev. 95, 215–225 (2001) CrossRefADSGoogle Scholar
  55. Y.-K. Ko, L.A. Fisk, G. Gloeckler, J. Geiss, Limitations on suprathermal tails of electrons in the lower solar corona. Geophys. Res. Lett. 23, 2785–2788 (1996) CrossRefADSGoogle Scholar
  56. Y.-K. Ko, J. Geiss, G. Gloeckler, On the differential ion velocity in the inner solar corona and the observed solar wind ionic charge states. J. Geophys. Res. 103(A7), 14539–14546 (1998). doi:10.1029/98JA00763 CrossRefADSGoogle Scholar
  57. Y.-K. Ko, J.C. Raymond, T.H. Zurbuchen, P. Riley, J.M. Raines, L. Strachan, Abundance variation at the vicinity of an active region and the coronal origin of the slow solar wind. Astrophys. J. 646, 1275–1287 (2006) CrossRefADSGoogle Scholar
  58. N. Koshida, M. Hosobuchi, Energy distribution of output electrons from a microchannel plate. Rev. Sci. Instrum. 56(7), 1329–1331 (1985) CrossRefADSGoogle Scholar
  59. H. Kucharek, E. Möbius, W. Li, C.F. Farrugia, M.A. Popecki, A.B. Galvin, B. Klecker, M. Hilchenbach, P. Bochsler, On the source and acceleration of energetic He+: A long-term observation with ACE/SEPICA. J. Geophys. Res. 108(A10), 8040 (2003). doi:10.1029/2003JA009938 CrossRefGoogle Scholar
  60. M. Lampton, C.W. Carlson, Low-distortion resistive anodes for two-dimensional position-sensitive MCP systems. Rev. Sci. Instrum. 50(9), 1093–1097 (1979) CrossRefADSGoogle Scholar
  61. M. Leitner, C.J. Farrugia, C. Möstl, K.W. Ogilvie, A.B. Galvin, R. Schwenn, H.K. Biernat, Consequences of the force-free model of magnetic clouds for their heliospheric evolution. J. Geophys. Res. 112, A06113 (2007). doi:10.1029/2006JA011940 CrossRefGoogle Scholar
  62. S.T. Lepri et al., Iron charge distribution as an identifier of interplanetary coronal mass ejections. J. Geophys. Res. 106(A12), 29231–29238 (2001) CrossRefADSGoogle Scholar
  63. S.T. Lepri, T. Zurbuchen, Iron charge state distributions as an indicator of hot ICMEs: Possible sources and temporal and spatial variation during solar maximum. J. Geophys. Res. 109(A1), A01112 (2004) CrossRefGoogle Scholar
  64. B.C. Low, Coronal mass ejections and magnetic helicity, in Proc. of the Third SOHO Workshop—Solar Dynamic Phenomena and Solar Wind Consequences. ESA SP-373, 1994, p. 123 Google Scholar
  65. B.S. Lüthi, Angular scattering of ions in thin carbon foils, simulations, measurements, and predictions for the PLASTIC instrument on STEREO, Diplomarbeit, University of Bern, 2003 Google Scholar
  66. J.G. Luhmann et al., STEREO IMPACT investigation goals, measurements, and observations overview. Space Sci. Rev. (2007, this issue). doi:10.11007/s11214-007-9170-x Google Scholar
  67. S. Lundquist, Magneto-hydrostatic fields. Arkiv fuor fysik 2, 361–365 (1950) MathSciNetGoogle Scholar
  68. K. Marubashi, Structure of interplanetary magnetic clouds and their solar origins. Adv. Space Res. 6(6) 335–338 (1986). doi:10.1016/0273-1177(86)90172-9 CrossRefADSGoogle Scholar
  69. G. Mason, J.E. Mazur, J.R. Dwyer, New spectral and abundance features of interplanetary heavy ions in corotating interaction regions. Astrophys. J. 486, L149–L152 (1997) CrossRefADSGoogle Scholar
  70. G.M. Mason et al., Origin, injection and acceleration of CIR particles: observations. Space Sci. Rev. 89, 327–367 (1999a) CrossRefADSGoogle Scholar
  71. G.M. Mason, J.E. Mazur, J.R. Dwyer, 3He enhancements in large solar energetic particle events. Astrophys. J. 525(2), L133–L136 (1999b) CrossRefADSGoogle Scholar
  72. J.R. Mazur, G.M. Mason, R.A. Mewaldt, Charge states of energetic particles from corotating interaction regions as constraints on their source. Astrophys. J. 566, 555–561 (2002). doi:10.1086/337989 CrossRefADSGoogle Scholar
  73. P. Mazzotta, G. Mazzitelli, S. Colafranscesco, N. Vittorio, Ionization balance for optically thin plasmas: rate coefficients for all atoms and ions of the elements H to NI. Astron. Astrophys. Suppl. Ser. 133, 403–409 (1998) CrossRefADSGoogle Scholar
  74. W. Meckbach, G. Braunstein, N. Arista, Secondary-electron emission in the backward and forward directions from thin carbon foils traversed by 25–250 keV proton beams. J. Phys. B: At. Mol. Phys. 8, L344–L349 (1975) CrossRefADSGoogle Scholar
  75. E. Möbius, D. Hovestadt, B. Klecker, M. Scholer, G. Gloeckler, F.M. Ipavich, Direct observation of He+ pick-up ions of interstellar origin in the solar wind. Nature 318, 426 (1985) CrossRefADSGoogle Scholar
  76. E. Möbius, D. Rucinski, M.A. Lee, P. Isenberg, Decreases in the antisunward flux of interstellar pickup He+ associated with radial interplanetary magnetic field. J. Geophys. Res. 103, 257 (1998) CrossRefADSGoogle Scholar
  77. E. Möbius, M. Popecki, B. Klecker, L.M. Kistler, A. Bogdanov, A.B. Galvin et al., Energy dependence of the ionic charge state distribution during the November 1997 solar energetic particle event. Geophys. Res. Lett. 26, 145–148 (1999) CrossRefADSGoogle Scholar
  78. E. Möbius, D. Morris, M.A. Popecki, B. Klecker, L.M. Kistler, A.B. Galvin, Charge states of energetic (∼0.5 MeV/n) ions in corotating interaction regions at 1 AU and implications on source populations. Geophys. Res. Lett. 29(2), (2002). doi:10.1029/2001GL013410
  79. M. Neugebauer, R. Goldstein, Particle and field signatures of coronal mass ejections in the solar wind, in Coronal Mass Ejections, Geophysical Monograph 99, ed. by N. Crooker, J.A. Joselyn, J. Feynman (American Geophysical Union, 1997), pp. 245–251 Google Scholar
  80. R.O. Neukomm, Composition of coronal mass ejections derived with SWICS/Ulysses, Ph.D. dissertation, University of Bern, 1998 Google Scholar
  81. M. Oetliker, Response of a passivated implanted planar silicon (PIPS) detector for heavy ions with energies between 25 and 360 keV. Nucl. Instrum. Methods Phys. Res. A 337, 145–148 (1993) CrossRefADSGoogle Scholar
  82. G. Poletto, S.T. Suess, D.A. Biesecker, R. Esser, G. Gloeckler, Y.-K. Ko, T.H. Zurbuchen, Low-latitude solar wind during the fall 1998 SOHO-Ulysses quadrature. J. Geophys. Res. 107(A10), 1300 (2001). doi:10.1029/2001JA000275 CrossRefGoogle Scholar
  83. M.A. Popecki, T.H. Zurbuchen, R.M. Skoug, C.W. Smith, A.B. Galvin, M. Lee, E. Möbius, A.T. Bogdanov, G. Gloeckler, S. Hefti, L.M. Kistler, B. Klecker, N.A. Schwadron, Simultaneous high Fe charge state measurements by solar energetic particle and solar wind instruments, AIP Conference Proceedings, September 15, 2000, vol. 528, Acceleration and Transport of Energetic Particles Observed in the Heliosphere: ACE 2000 Symposium, 2000, pp. 139–142 Google Scholar
  84. M.A. Popecki, Observations of energy-dependent charge states of solar energetic particles. Geophys. Monogr. Ser. 165, 127–135 (2006) Google Scholar
  85. D.V. Reames, Particle acceleration at the sun and in the heliosphere. Space Sci. Rev. 90, 413–491 (1999) CrossRefADSGoogle Scholar
  86. P. Riley et al., Evidence of post-eruption reconnection associated with coronal mass ejections in the solar wind. Astrophys. J. 578 (2002) Google Scholar
  87. P. Riley, N.U. Crooker, Kinematic treatment of coronal mass ejection evolution in the solar wind. Astrophys. J. 600, 1035–1042 (2004) CrossRefADSGoogle Scholar
  88. P. Riley, Modeling corotating interaction regions: from the Sun to 1 AU. J. Atmospheric Sol.-Terr. Phys. 69, 32–42 (2007). doi:10.1016/j.jastp.2006.06.008 CrossRefADSGoogle Scholar
  89. I.G. Richardson, H.V. Cane, Identification of interplanetary coronal mass ejections at 1 AU using multiple solar wind plasma composition anomalies. J. Geophys. Res. 109, A09104 (2004a). doi:10.1029/2004JA010598 CrossRefGoogle Scholar
  90. I.G. Richardson, H.V. Cane, The fraction of interplanetary coronal mass ejections that are magnetic clouds: Evidence for a solar cycle variation. Geophys. Res. Lett. 31, L18804 (2004b). doi10.1029/2004GL020958 CrossRefADSGoogle Scholar
  91. S.M. Ritzau, R.A. Baragiola, Electron emission from carbon foils induced by keV ions. Phys. Rev. B 58, 2529–2538 (1998) CrossRefADSGoogle Scholar
  92. L. Saul, E. Möbius, P. Isenberg, P. Bochsler, On pitch-angle scattering rates of interstellar pickup ions as determined by in situ measurement of velocity distributions. Astrophys. J. 655, 672–677 (2007) CrossRefADSGoogle Scholar
  93. M. Steinacher, F. Jost, U. Schwab, A modern and fully automated calibration system for space ion mass spectrometers. Rev. Sci. Instrum. 66(8), 4180–4187 (1995) CrossRefADSGoogle Scholar
  94. E. Steinbauer, P. Bauer, M. Geretschlaeger, G. Bortels, J.P. Biersack, P. Burger, Energy resolution of silicon detectors—approaching the physical limit. Nucl. Instrum. Methods in Phys. Res. B 85, 642–649 (1994) CrossRefADSGoogle Scholar
  95. G.E. Thomas, The interstellar wind and its influence on the interplanetary environment. Ann. Rev. Earth Planet. Sci. 6, 173 (1978) CrossRefADSGoogle Scholar
  96. A.J. Tylka et al., Shock geometry, seed populations, and the origin of variable elemental composition at high energies in large gradual solar particle events. Astrophys. J. 625, 474–495 (2005) CrossRefADSGoogle Scholar
  97. B.J. Vasquez, C.J. Farrugia et al., The nature of fluctuations on directional discontinuities inside solar ejecta: Wind observations and theoretical interpretation. J. Geophys. Res. 106, 29283 (2001) CrossRefADSGoogle Scholar
  98. T.T. von Rosenvinge, H.V. Cane, Solar energetic particles: An overview, in Solar Eruptions and Energetic Particles, ed. by N. Gopalswamy, R.A. Mewaldt, J. Torsti. AGU Monogr. Ser. 165, 103–114 (2006) Google Scholar
  99. G. Wehner, [De]Energieverteilung der von 2, 5, 10 und 15 keV He- und Ar-ionen an Molybdaen asugeloesten electronen. Z. Physik A Hadrons Nucl., 439–442 (1966). doi:10.1007/BF01326441
  100. R.F. Wimmer-Schweingruber, R. von Steiger, R. Paerli, Solar wind stream interfaces in corotating interaction regions: SWICS/Ulysses results. Geophys. Res. 102, 17407–17417 (1997) CrossRefADSGoogle Scholar
  101. R.F. Wimmer-Schweingruber, R. v. Steiger, J. Geiss, G. Gloeckler, F.M. Ipavich, B. Wilken, O5+ in the high-speed streams: SWICS/Ulysses results. Space Sci. Rev. 85, 387–396 (1998) CrossRefADSGoogle Scholar
  102. R.F. Wimmer-Schweingruber, R. v. Steiger, R. Paerli, Solar wind stream interfaces in corotating interaction regions: New SWICS/Ulysses results. Geophys. Res. 104, 9933–9945 (1999) CrossRefADSGoogle Scholar
  103. R.F. Wimmer-Schweingruber, The composition of the solar wind. Adv. Space Res. 3(0), 23–32 (2002) CrossRefGoogle Scholar
  104. R.F. Wimmer-Schweingruber, Coronal mass ejections, a personal workshop summary. Space Sci. Rev. 123, 471–480 (2006) CrossRefADSGoogle Scholar
  105. R.F. Wimmer-Schweingruber et al., Understanding interplanetary coronal mass ejection signatures. Space Sci. Rev. 123, 177–216 (2006) CrossRefADSGoogle Scholar
  106. H. Wollnik, T. Matsuo, H. Matsuda, The electrostatic potential in a toroidal condenser. Nucl. Instrum. Methods 102, 13–17 (1972) CrossRefADSGoogle Scholar
  107. D.T. Young, S.J. Bame, M.F. Thomsen, R.H. Martin, J.L. Burch, J.A. Marshall, B. Reinhard, 2π-radian field-of-view toroidal electrostatic analyzer. Rev. Sci. Instrum. 59(5), 743–751 (1988) CrossRefADSGoogle Scholar
  108. D.T. Young, J.A. Marshall, J.L. Burch, S.J. Bame, R.H. Martin, A 360° field-of-view toroidal ion composition analyzer using time-of-flight, in Yosemite Conference on Outstanding Problems in Solar System Plasma Physics: Theory and Instrumentation, 1989, pp. 171–176 Google Scholar
  109. T.H. Zurbuchen, I.G. Richardson, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci. Rev. 123, 31–43 (2006) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • A. B. Galvin
    • 1
    • 2
  • L. M. Kistler
    • 1
    • 2
  • M. A. Popecki
    • 1
  • C. J. Farrugia
    • 1
    • 2
  • K. D. C. Simunac
    • 1
    • 2
  • L. Ellis
    • 1
  • E. Möbius
    • 1
    • 2
  • M. A. Lee
    • 1
    • 2
  • M. Boehm
    • 1
  • J. Carroll
    • 1
  • A. Crawshaw
    • 1
  • M. Conti
    • 1
  • P. Demaine
    • 1
  • S. Ellis
    • 1
  • J. A. Gaidos
    • 1
  • J. Googins
    • 1
  • M. Granoff
    • 1
  • A. Gustafson
    • 1
  • D. Heirtzler
    • 1
  • B. King
    • 1
  • U. Knauss
    • 1
  • J. Levasseur
    • 1
  • S. Longworth
    • 1
  • K. Singer
    • 1
  • S. Turco
    • 1
  • P. Vachon
    • 1
  • M. Vosbury
    • 1
  • M. Widholm
    • 1
  • L. M. Blush
    • 3
  • R. Karrer
    • 3
  • P. Bochsler
    • 3
  • H. Daoudi
    • 3
  • A. Etter
    • 3
  • J. Fischer
    • 3
  • J. Jost
    • 3
  • A. Opitz
    • 3
  • M. Sigrist
    • 3
  • P. Wurz
    • 3
  • B. Klecker
    • 4
  • M. Ertl
    • 4
  • E. Seidenschwang
    • 4
  • R. F. Wimmer-Schweingruber
    • 5
  • M. Koeten
    • 5
  • B. Thompson
    • 6
  • D. Steinfeld
    • 7
  1. 1.Institute for the Study of Earth, Oceans and SpaceUniversity of New HampshireDurhamUSA
  2. 2.Department of PhysicsUniversity of New HampshireDurhamUSA
  3. 3.Physikalisches InstitutUniversity of BernBernSwitzerland
  4. 4.Max-Planck-Institut fuer extraterrestrische PhysikGarchingGermany
  5. 5.Extraterrestrial Physics, Institute for Experimental and Applied PhysicsChristian-Albrechts-University KielKielGermany
  6. 6.National Aeronautics and Space AdministrationGoddard Space Flight CenterGreenbeltUSA
  7. 7.Orbital Sciences CorporationGreenbeltUSA

Personalised recommendations