The Plasma and Suprathermal Ion Composition (PLASTIC) Investigation on the STEREO Observatories

Abstract

The Plasma and Suprathermal Ion Composition (PLASTIC) investigation provides the in situ solar wind and low energy heliospheric ion measurements for the NASA Solar Terrestrial Relations Observatory Mission, which consists of two spacecraft (STEREO-A, STEREO-B). PLASTIC-A and PLASTIC-B are identical. Each PLASTIC is a time-of-flight/energy mass spectrometer designed to determine the elemental composition, ionic charge states, and bulk flow parameters of major solar wind ions in the mass range from hydrogen to iron. PLASTIC has nearly complete angular coverage in the ecliptic plane and an energy range from ∼0.3 to 80 keV/e, from which the distribution functions of suprathermal ions, including those ions created in pick-up and local shock acceleration processes, are also provided.

References

  1. M.R. Aellig, H. Grünwaldt, P. Bochsler, S. Hefti, P. Wurz, R. Kallenbach, F.M. Ipavich, A.B. Galvin, R. Bodmer, D. Hovestadt, M. Hilchenbach et al., Solar wind minor ion charge states observed with high time resolution with SOHO/ CELIAS/ CTOF, in Correlated Phenomena at the Sun, in the Heliosphere and in Geospace. ESA SP-415, 27–31 (1997)

  2. F. Allegrini, The PLASTIC sensor on STEREO: Design of the entrance system/energy analyzer and numerical simulations of solar wind measurements. Ph.d. thesis, University of Bern, Switzerland, 2002

  3. M.J. Aschwanden et al., Theoretical modeling for the STEREO mission. Space Sci. Rev. (2007, this issue). doi:10.1007/s11214-006-9027-8

    Google Scholar 

  4. S.J. Bame, Solar wind minor ions—recent observations, in Solar Wind Five, NASA Conf. Publ. CP-2280, ed. by M. Neugebauer (NASA Scientific and Technical Information Branch, 1983), p. 573

  5. M.G. Baring, K.W. Ogilvie, D.C. Ellison, R.J. Forsyth, Acceleration of solar wind ions by nearby interplanetary shocks: Comparison of Monte Carlo simulations with Ulysses observations. Astrophys. J. 476, 889–902 (1997)

    Article  ADS  Google Scholar 

  6. D. Biesecker, D.F. Webb, O.C.St. Cyr, STEREO space weather and the space weather Beacon. Space Sci. Rev. (2007, this issue). doi:10.1007/s11214-007-9165-7

    Google Scholar 

  7. L.M. Blush, F. Allegrini, P. Bochsler, H. Daoudi, A. Galvin, R. Karrer, L. Kistler, B. Klecker, E. Moebius, A. Optiz, M. Popecki, B. Thompson, R.F. Wimmer-Schweingruber, P. Wurz, Development and calibration of major components for the STEREO/PLASTIC (plasma and suprathermal ion composition) instrument. Adv. Space Res. 36, 1544–1556 (2005)

    Article  ADS  Google Scholar 

  8. L.F. Burlaga, E. Sittler, F. Mariani, R. Schwenn, Magnetic loop behind an interplanetary shock: Voyager, Helios and IMP 8 observations. J. Geophys. Res. 86, 6673–6684 (1981)

    Article  ADS  Google Scholar 

  9. L.F. Burlaga, Magnetic clouds: Constant alpha force-free configurations. J. Geophys. Res. 93, 7217 (1988)

    Article  ADS  Google Scholar 

  10. L.F. Burlaga, Large scale fluctuations, in Interplanetary Magnetohydrodynamics (Oxford University Press, New York, 1995), pp. 169–200

    Google Scholar 

  11. J.-L. Bougeret, K. Goetz, M.L. Kaiser et al., S/WAVES: The radio and plasma wave investigation on the STEREO mission. Space Sci. Rev. (2007, this issue)

  12. H.V. Cane, T.T. von Rosenvinge, C.M.S. Cohen, R.A. Mewaldt, Two components in major solar particle events. Geophys. Res. Lett. 30(12), SEP 5-1 (2003)

    Article  Google Scholar 

  13. K. Chotoo, N.A. Schwadron, G.M. Mason, T.H. Zurbuchen, G. Gloeckler, A. Posner, L.A. Fisk, A.B. Galvin, D.C. Hamilton, M.R. Collier, The suprathermal seed population for corotating interaction regions at 1 AU deduced from composition and spectra of H+, He++, and He+ observed on Wind. J. Geophys. Res. 105, 23107–23122 (2000)

    Article  ADS  Google Scholar 

  14. M.R. Collier, R.A. Lundgren, D.C. Hamilton, Channeling in ion implanted silicon solid-state detectors, University of Maryland Technical Report, PP 89-001, Dept. of Physics and Astronomy, and the Institute for Physical Science and Technology, University of Maryland, 1988

  15. N. Crooker, J.T. Gosling, E.J. Smith, C.T. Russell, A bubblelike coronal mass ejection flux rope in the solar wind, in Physics of Magnetic Flux Ropes, ed. by C.T. Russell, E.R. Priest, L.C. Lee. Geophys. Monogr. Ser., vol. 58 (AGU, Washington, 1990), pp. 365

    Google Scholar 

  16. S.R. Cranmer et al., An empirical model of a polar coronal hole at solar minimum. Astrophys. J. 511, 481–501 (1999)

    Article  ADS  Google Scholar 

  17. D.A. Dahl, SIMION 3D Version 6.0 User’s Manual (Ion Source Software, Idaho National Engineering Laboratory, 1995)

    Google Scholar 

  18. M.H. Denton, J.E. Borovsky, R.M. Skoug, M.F. Thomsen, B. Lavraud, M.G. Henderson, R.L. McPherron, J.C. Zhang, M.W. Liemohn, Geomagnetic storms driven by ICME- and CIR-dominated solar wind. J. Geophys. Res. 111, A07S07 (2006). doi:10.1029/2005JA011436

    Article  Google Scholar 

  19. M.I. Desai, G.M. Mason, J.R. Dwyer, J.E. Mazur, C.W. Smith, R.M. Skoug, Acceleration of 3He nuclei at interplanetary shocks. Astrophys. J. 553(1), L89–L92 (2001)

    Article  ADS  Google Scholar 

  20. J.R. Dwyer, G.M. Mason, J.E. Mazur, J.R. Jokipii, T.T. von Rosenvinge, R.P. Lepping, Perpendicular transport of low energy corotating interaction region-associated nuclei. Astrophys. J. 490, L115–L118 (1997)

    Article  ADS  Google Scholar 

  21. H. Ewald, H. Liebl, Der Astigmatismus des Toroidkondensators. Z. Naturforschung 10a, 872–876 (1955)

    ADS  Google Scholar 

  22. C.J. Farrugia et al., A reconnection layer associated with a magnetic cloud. Adv. Space Res. 28(5), 759 (2001)

    Article  ADS  Google Scholar 

  23. C.J. Farrugia et al., Wind and ACE observations during the great flow of 1–4 May 1998: Relation to solar activity and implications for the magnetosphere. J. Geophys. Res. 107(A9), SSH 3–1 (2002). doi:10.1029/2001JA000188

    Article  Google Scholar 

  24. C.J. Farrugia et al., Evolution of magnetic clouds from 0.3 AU to 1 AU: A joint Helios-Wind Investigation. Sol. Wind 11, 723–726 (2005a)

    Google Scholar 

  25. C.J. Farrugia et al., Cross-correlation of interplanetary parameters for large (∼450 Re) separation: Dependence on interplanetary structure. Sol. Wind 11, 719 (2005b)

    Google Scholar 

  26. C.J. Farrugia etal., Interplanetary coronal mass ejection and ambient interplanetary magnetic field correlations during the Sun–Earth connection events of October–November 2003. J. Geophys. Res. 110 (2005c). doi:10.1029/2004JA10968

  27. T.G. Forbes et al., CME theory and models. Space Sci. Rev. 123, 251–302 (2006)

    Article  ADS  Google Scholar 

  28. A.B. Galvin, F.M. Ipavich, G. Gloeckler, D. Hovestadt, S. Bame, B. Klecker, M. Scholer, B.T. Tsurutani, Solar wind iron charge states preceding a driver plasma. J. Geophys. Res. 92(A11), 12069–12081 (1987)

    Article  ADS  Google Scholar 

  29. A.B. Galvin, G. Gloeckler, F.M. Ipavich, C.M. Shafer, J. Geiss, K. Ogilvie, Solar wind composition measurements by the Ulysses SWICS experiment during transient solar wind flows. Adv. Space Res. 13(6), 75–78 (1993)

    Article  ADS  Google Scholar 

  30. A.B. Galvin, Minor ion composition in CME-related solar wind, in Coronal Mass Ejections, Geophysical Monograph 99, ed. by N. Crooker, J.A. Joselyn, J. Feynman (American Geophysical Union, 1997), pp. 253–260

  31. A.B. Galvin, J.L. Kohl, Whole Sun Month at solar minimum: An introduction. J. Geophys. Res. 104(A5), 9673–9678 (1999). doi:10.1029/1999JA900008

    Article  ADS  Google Scholar 

  32. A.G. Ghielmetti, H. Balsiger, R. Baenninger, P. Eberhardt, J. Geiss, D.T. Young, Calibration system for satellite and rocket-borne ion mass spectrometers in the energy range from 5 eV/charge to 100 keV/charge. Rev. Sci. Instrum. 54(4), 425–436 (1983)

    Article  ADS  Google Scholar 

  33. S.E. Gibson, Global solar wind structure from solar minimum to solar maximum: Sources and evolution. Space Sci. Rev. 97(1/4), 69 (2001)

    Article  ADS  Google Scholar 

  34. G. Gloeckler, J. Geiss, H. Balsiger, P. Bedini, J.C. Cain, J. Fischer, L. Fisk, A.B. Galvin, F. Gliem, D.C. Hamilton, J.V. Hollweg, F.M. Ipavich, R. Joos, S. Livi, R. Lundgren, J.F. McKenzie, U. Mall, K.W. Ogilvie, F. Ottens, W. Rieck, E.O. Tums, R. von Steiger, W. Weiss, B. Wilken, The solar wind ion composition spectrometer. Astron. Astrophys. Suppl. Ser. 92, 267 (1992)

    ADS  Google Scholar 

  35. G. Gloeckler et al., The solar wind and suprathermal ion composition investigation on the WIND spacecraft. Space Sci. Rev. 71, 79–124 (1995)

    Article  ADS  Google Scholar 

  36. G. Gloeckler, J. Geiss, Interstellar and inner source pickup ions observed by SWICS on Ulysses. Space Sci. Rev. 86, 127 (1998)

    Article  ADS  Google Scholar 

  37. G. Gloeckler, P. Bedini, P. Bochsler, L.A. Fisk, J. Geiss, F.M. Ipavich, J. Cain, J. Fischer, R. Kallenbach, J. Miller, O. Tums, R. Wimmer, Investigation of the composition of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS on the ACE spacecraft. Space Sci. Rev. 86, 497 (1998)

    Article  ADS  Google Scholar 

  38. G. Gloeckler et al., Unusual composition of the solar wind in the 2–3 May 1998 CME observed with SWICS on ACE. Geophys. Res. Lett. 26(2), 157 (1999)

    Article  ADS  Google Scholar 

  39. G. Gloeckler, L.A. Fisk, L.J. Lanzerotti, Acceleration of solar wind and pickup ions by shocks, in Proceedings of the Solar Wind 11 / SOHO 16, “Connecting Sun and Heliosphere” Conference (ESA SP-592), published on CDROM, 17, 2005a

  40. G. Gloeckler, L.A. Fisk, L.J. Lanzerotti, Pickup ions upstream and downstream of shocks. AIP Conf. Proc. 781, 252–260 (2005b). doi:10.1063/1.2032705

    Article  ADS  Google Scholar 

  41. H. Goldstein, On the field configuration in magnetic clouds, in Solar Wind Five. NASA Conf. Publ. 2280, 1983, p. 731

  42. M. Gonin, R. Kallenbach, P. Bochsler, A. Buergi, Charge exchange of low energy particles passing through thin carbon foils: Dependence on foil thickness and charge state yields of Mg, Ca, Ti, Cr and Ni. Nucl. Instr. Methods B 101, 313–320 (1995)

    Article  ADS  Google Scholar 

  43. M. Hellsing, L. Karlsson, H.-O. Andren, H. Norden, Performance of a microchannel plate ion detector in the energy range 3–25 keV. J. Phys. E.: Sci. Instrum. 18, 920–925 (1985)

    Article  ADS  Google Scholar 

  44. D. Hovestadt, M. Hilchenbach, A. Buergi, B. Klecker, P. Laeverenz, M. Scholer, H. Gruenwaldt, W.I. Axford, S. Livi, E. Marsch, B. Wilken, H.P. Winterhoff, F.M. Ipavich, P. Bedini, M.A. Coplan, A.B. Galvin, G. Gloeckler, P. Bochsler, H. Balsiger, J. Fischer, J. Geiss, R. Kallenbach, P. Wurz, K.-U. Reiche, F. Gliem, D.L. Judge, H.S. Ogawa, K.C. Hsieh, E. Moebius, M.A. Lee, G.G. Managadze, M.I. Verigin, M. Neugebauer, CELIAS: The charge, element, and isotope analysis system for SOHO. Sol. Phys. 162, 441 (1995)

    Article  ADS  Google Scholar 

  45. R. Howard et al., Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) (2007, this issue)

  46. Q. Hu, B.U.O. Sonnerup, Reconstruction of magnetic clouds in the solar wind: Orientation and configuration. J. Geophys. Res. 107 (2002). doi:10.1029/2001JA000293

  47. A.J. Hundhausen, The origin and propagation of coronal mass ejections, in Proc. 6th Intl. Solar Wind Conf., ed. by V.J. Pizzo, T.E. Holzer, D.G. Sime (NCAR Technical Note NCAR/TN-306+Proc.), 1988, 1, 131

  48. L. Janoo, C.J. Farrugia, R.B. Torbert, J.M. Quinn et al., Field and flow perturbations in the October 18–19, 1995, magnetic cloud. J. Geophys. Res. 103, 17249 (1998)

    Article  ADS  Google Scholar 

  49. S.W. Kahler, N.R. Sheeley Jr., R.A. Howard, D.J. Michels, M.J. Koomen, R.E. McGuire, T.T. von Rosenvinge, D.V. Reames, Associations between coronal mass ejections and solar energetic proton events. J. Geophys. Res. 89, 9683–9693 (1984)

    Article  ADS  Google Scholar 

  50. M. Kaiser, T.A. Kucera, J.M. Davila, O.C. St. Cyr, The STEREO mission: An overview. Space Sci. Rev. (2007, this issue). doi:10.1007/s11214-007-9277-0

    Google Scholar 

  51. R. Karrer, Ion-Optical Calibration of STEREO/PLASTIC, Ph.D. Dissertation, University of Bern, 2007

  52. J. Kawata, K. Ohya, I. Mori, A Monte Carlo simulation of ion-induced kinetic electron emission with a stochastic excitation of electrons in solids. Jpn. J. Appl. Phys. 30, 3510–3515 (1991), doi:10.1143/JJAP.30.3510

    Article  ADS  Google Scholar 

  53. B. Klecker et al., Energetic particle observations. Space Sci. Rev. 123, 217–250 (2006). doi:10.1007/s11214-006-9018-9

    Article  ADS  Google Scholar 

  54. K.-L. Klein, G. Trottet, The origin of solar energetic particle events: Coronal acceleration versus shock wave acceleration. Space Sci. Rev. 95, 215–225 (2001)

    Article  ADS  Google Scholar 

  55. Y.-K. Ko, L.A. Fisk, G. Gloeckler, J. Geiss, Limitations on suprathermal tails of electrons in the lower solar corona. Geophys. Res. Lett. 23, 2785–2788 (1996)

    Article  ADS  Google Scholar 

  56. Y.-K. Ko, J. Geiss, G. Gloeckler, On the differential ion velocity in the inner solar corona and the observed solar wind ionic charge states. J. Geophys. Res. 103(A7), 14539–14546 (1998). doi:10.1029/98JA00763

    Article  ADS  Google Scholar 

  57. Y.-K. Ko, J.C. Raymond, T.H. Zurbuchen, P. Riley, J.M. Raines, L. Strachan, Abundance variation at the vicinity of an active region and the coronal origin of the slow solar wind. Astrophys. J. 646, 1275–1287 (2006)

    Article  ADS  Google Scholar 

  58. N. Koshida, M. Hosobuchi, Energy distribution of output electrons from a microchannel plate. Rev. Sci. Instrum. 56(7), 1329–1331 (1985)

    Article  ADS  Google Scholar 

  59. H. Kucharek, E. Möbius, W. Li, C.F. Farrugia, M.A. Popecki, A.B. Galvin, B. Klecker, M. Hilchenbach, P. Bochsler, On the source and acceleration of energetic He+: A long-term observation with ACE/SEPICA. J. Geophys. Res. 108(A10), 8040 (2003). doi:10.1029/2003JA009938

    Article  Google Scholar 

  60. M. Lampton, C.W. Carlson, Low-distortion resistive anodes for two-dimensional position-sensitive MCP systems. Rev. Sci. Instrum. 50(9), 1093–1097 (1979)

    Article  ADS  Google Scholar 

  61. M. Leitner, C.J. Farrugia, C. Möstl, K.W. Ogilvie, A.B. Galvin, R. Schwenn, H.K. Biernat, Consequences of the force-free model of magnetic clouds for their heliospheric evolution. J. Geophys. Res. 112, A06113 (2007). doi:10.1029/2006JA011940

    Article  Google Scholar 

  62. S.T. Lepri et al., Iron charge distribution as an identifier of interplanetary coronal mass ejections. J. Geophys. Res. 106(A12), 29231–29238 (2001)

    Article  ADS  Google Scholar 

  63. S.T. Lepri, T. Zurbuchen, Iron charge state distributions as an indicator of hot ICMEs: Possible sources and temporal and spatial variation during solar maximum. J. Geophys. Res. 109(A1), A01112 (2004)

    Article  Google Scholar 

  64. B.C. Low, Coronal mass ejections and magnetic helicity, in Proc. of the Third SOHO Workshop—Solar Dynamic Phenomena and Solar Wind Consequences. ESA SP-373, 1994, p. 123

  65. B.S. Lüthi, Angular scattering of ions in thin carbon foils, simulations, measurements, and predictions for the PLASTIC instrument on STEREO, Diplomarbeit, University of Bern, 2003

  66. J.G. Luhmann et al., STEREO IMPACT investigation goals, measurements, and observations overview. Space Sci. Rev. (2007, this issue). doi:10.11007/s11214-007-9170-x

    Google Scholar 

  67. S. Lundquist, Magneto-hydrostatic fields. Arkiv fuor fysik 2, 361–365 (1950)

    MathSciNet  Google Scholar 

  68. K. Marubashi, Structure of interplanetary magnetic clouds and their solar origins. Adv. Space Res. 6(6) 335–338 (1986). doi:10.1016/0273-1177(86)90172-9

    Article  ADS  Google Scholar 

  69. G. Mason, J.E. Mazur, J.R. Dwyer, New spectral and abundance features of interplanetary heavy ions in corotating interaction regions. Astrophys. J. 486, L149–L152 (1997)

    Article  ADS  Google Scholar 

  70. G.M. Mason et al., Origin, injection and acceleration of CIR particles: observations. Space Sci. Rev. 89, 327–367 (1999a)

    Article  ADS  Google Scholar 

  71. G.M. Mason, J.E. Mazur, J.R. Dwyer, 3He enhancements in large solar energetic particle events. Astrophys. J. 525(2), L133–L136 (1999b)

    Article  ADS  Google Scholar 

  72. J.R. Mazur, G.M. Mason, R.A. Mewaldt, Charge states of energetic particles from corotating interaction regions as constraints on their source. Astrophys. J. 566, 555–561 (2002). doi:10.1086/337989

    Article  ADS  Google Scholar 

  73. P. Mazzotta, G. Mazzitelli, S. Colafranscesco, N. Vittorio, Ionization balance for optically thin plasmas: rate coefficients for all atoms and ions of the elements H to NI. Astron. Astrophys. Suppl. Ser. 133, 403–409 (1998)

    Article  ADS  Google Scholar 

  74. W. Meckbach, G. Braunstein, N. Arista, Secondary-electron emission in the backward and forward directions from thin carbon foils traversed by 25–250 keV proton beams. J. Phys. B: At. Mol. Phys. 8, L344–L349 (1975)

    Article  ADS  Google Scholar 

  75. E. Möbius, D. Hovestadt, B. Klecker, M. Scholer, G. Gloeckler, F.M. Ipavich, Direct observation of He+ pick-up ions of interstellar origin in the solar wind. Nature 318, 426 (1985)

    Article  ADS  Google Scholar 

  76. E. Möbius, D. Rucinski, M.A. Lee, P. Isenberg, Decreases in the antisunward flux of interstellar pickup He+ associated with radial interplanetary magnetic field. J. Geophys. Res. 103, 257 (1998)

    Article  ADS  Google Scholar 

  77. E. Möbius, M. Popecki, B. Klecker, L.M. Kistler, A. Bogdanov, A.B. Galvin et al., Energy dependence of the ionic charge state distribution during the November 1997 solar energetic particle event. Geophys. Res. Lett. 26, 145–148 (1999)

    Article  ADS  Google Scholar 

  78. E. Möbius, D. Morris, M.A. Popecki, B. Klecker, L.M. Kistler, A.B. Galvin, Charge states of energetic (∼0.5 MeV/n) ions in corotating interaction regions at 1 AU and implications on source populations. Geophys. Res. Lett. 29(2), (2002). doi:10.1029/2001GL013410

  79. M. Neugebauer, R. Goldstein, Particle and field signatures of coronal mass ejections in the solar wind, in Coronal Mass Ejections, Geophysical Monograph 99, ed. by N. Crooker, J.A. Joselyn, J. Feynman (American Geophysical Union, 1997), pp. 245–251

  80. R.O. Neukomm, Composition of coronal mass ejections derived with SWICS/Ulysses, Ph.D. dissertation, University of Bern, 1998

  81. M. Oetliker, Response of a passivated implanted planar silicon (PIPS) detector for heavy ions with energies between 25 and 360 keV. Nucl. Instrum. Methods Phys. Res. A 337, 145–148 (1993)

    Article  ADS  Google Scholar 

  82. G. Poletto, S.T. Suess, D.A. Biesecker, R. Esser, G. Gloeckler, Y.-K. Ko, T.H. Zurbuchen, Low-latitude solar wind during the fall 1998 SOHO-Ulysses quadrature. J. Geophys. Res. 107(A10), 1300 (2001). doi:10.1029/2001JA000275

    Article  Google Scholar 

  83. M.A. Popecki, T.H. Zurbuchen, R.M. Skoug, C.W. Smith, A.B. Galvin, M. Lee, E. Möbius, A.T. Bogdanov, G. Gloeckler, S. Hefti, L.M. Kistler, B. Klecker, N.A. Schwadron, Simultaneous high Fe charge state measurements by solar energetic particle and solar wind instruments, AIP Conference Proceedings, September 15, 2000, vol. 528, Acceleration and Transport of Energetic Particles Observed in the Heliosphere: ACE 2000 Symposium, 2000, pp. 139–142

  84. M.A. Popecki, Observations of energy-dependent charge states of solar energetic particles. Geophys. Monogr. Ser. 165, 127–135 (2006)

    Google Scholar 

  85. D.V. Reames, Particle acceleration at the sun and in the heliosphere. Space Sci. Rev. 90, 413–491 (1999)

    Article  ADS  Google Scholar 

  86. P. Riley et al., Evidence of post-eruption reconnection associated with coronal mass ejections in the solar wind. Astrophys. J. 578 (2002)

  87. P. Riley, N.U. Crooker, Kinematic treatment of coronal mass ejection evolution in the solar wind. Astrophys. J. 600, 1035–1042 (2004)

    Article  ADS  Google Scholar 

  88. P. Riley, Modeling corotating interaction regions: from the Sun to 1 AU. J. Atmospheric Sol.-Terr. Phys. 69, 32–42 (2007). doi:10.1016/j.jastp.2006.06.008

    Article  ADS  Google Scholar 

  89. I.G. Richardson, H.V. Cane, Identification of interplanetary coronal mass ejections at 1 AU using multiple solar wind plasma composition anomalies. J. Geophys. Res. 109, A09104 (2004a). doi:10.1029/2004JA010598

    Article  Google Scholar 

  90. I.G. Richardson, H.V. Cane, The fraction of interplanetary coronal mass ejections that are magnetic clouds: Evidence for a solar cycle variation. Geophys. Res. Lett. 31, L18804 (2004b). doi10.1029/2004GL020958

    Article  ADS  Google Scholar 

  91. S.M. Ritzau, R.A. Baragiola, Electron emission from carbon foils induced by keV ions. Phys. Rev. B 58, 2529–2538 (1998)

    Article  ADS  Google Scholar 

  92. L. Saul, E. Möbius, P. Isenberg, P. Bochsler, On pitch-angle scattering rates of interstellar pickup ions as determined by in situ measurement of velocity distributions. Astrophys. J. 655, 672–677 (2007)

    Article  ADS  Google Scholar 

  93. M. Steinacher, F. Jost, U. Schwab, A modern and fully automated calibration system for space ion mass spectrometers. Rev. Sci. Instrum. 66(8), 4180–4187 (1995)

    Article  ADS  Google Scholar 

  94. E. Steinbauer, P. Bauer, M. Geretschlaeger, G. Bortels, J.P. Biersack, P. Burger, Energy resolution of silicon detectors—approaching the physical limit. Nucl. Instrum. Methods in Phys. Res. B 85, 642–649 (1994)

    Article  ADS  Google Scholar 

  95. G.E. Thomas, The interstellar wind and its influence on the interplanetary environment. Ann. Rev. Earth Planet. Sci. 6, 173 (1978)

    Article  ADS  Google Scholar 

  96. A.J. Tylka et al., Shock geometry, seed populations, and the origin of variable elemental composition at high energies in large gradual solar particle events. Astrophys. J. 625, 474–495 (2005)

    Article  ADS  Google Scholar 

  97. B.J. Vasquez, C.J. Farrugia et al., The nature of fluctuations on directional discontinuities inside solar ejecta: Wind observations and theoretical interpretation. J. Geophys. Res. 106, 29283 (2001)

    Article  ADS  Google Scholar 

  98. T.T. von Rosenvinge, H.V. Cane, Solar energetic particles: An overview, in Solar Eruptions and Energetic Particles, ed. by N. Gopalswamy, R.A. Mewaldt, J. Torsti. AGU Monogr. Ser. 165, 103–114 (2006)

    Google Scholar 

  99. G. Wehner, [De]Energieverteilung der von 2, 5, 10 und 15 keV He- und Ar-ionen an Molybdaen asugeloesten electronen. Z. Physik A Hadrons Nucl., 439–442 (1966). doi:10.1007/BF01326441

  100. R.F. Wimmer-Schweingruber, R. von Steiger, R. Paerli, Solar wind stream interfaces in corotating interaction regions: SWICS/Ulysses results. Geophys. Res. 102, 17407–17417 (1997)

    Article  ADS  Google Scholar 

  101. R.F. Wimmer-Schweingruber, R. v. Steiger, J. Geiss, G. Gloeckler, F.M. Ipavich, B. Wilken, O5+ in the high-speed streams: SWICS/Ulysses results. Space Sci. Rev. 85, 387–396 (1998)

    Article  ADS  Google Scholar 

  102. R.F. Wimmer-Schweingruber, R. v. Steiger, R. Paerli, Solar wind stream interfaces in corotating interaction regions: New SWICS/Ulysses results. Geophys. Res. 104, 9933–9945 (1999)

    Article  ADS  Google Scholar 

  103. R.F. Wimmer-Schweingruber, The composition of the solar wind. Adv. Space Res. 3(0), 23–32 (2002)

    Article  Google Scholar 

  104. R.F. Wimmer-Schweingruber, Coronal mass ejections, a personal workshop summary. Space Sci. Rev. 123, 471–480 (2006)

    Article  ADS  Google Scholar 

  105. R.F. Wimmer-Schweingruber et al., Understanding interplanetary coronal mass ejection signatures. Space Sci. Rev. 123, 177–216 (2006)

    Article  ADS  Google Scholar 

  106. H. Wollnik, T. Matsuo, H. Matsuda, The electrostatic potential in a toroidal condenser. Nucl. Instrum. Methods 102, 13–17 (1972)

    Article  ADS  Google Scholar 

  107. D.T. Young, S.J. Bame, M.F. Thomsen, R.H. Martin, J.L. Burch, J.A. Marshall, B. Reinhard, 2π-radian field-of-view toroidal electrostatic analyzer. Rev. Sci. Instrum. 59(5), 743–751 (1988)

    Article  ADS  Google Scholar 

  108. D.T. Young, J.A. Marshall, J.L. Burch, S.J. Bame, R.H. Martin, A 360° field-of-view toroidal ion composition analyzer using time-of-flight, in Yosemite Conference on Outstanding Problems in Solar System Plasma Physics: Theory and Instrumentation, 1989, pp. 171–176

  109. T.H. Zurbuchen, I.G. Richardson, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci. Rev. 123, 31–43 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. B. Galvin.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Galvin, A.B., Kistler, L.M., Popecki, M.A. et al. The Plasma and Suprathermal Ion Composition (PLASTIC) Investigation on the STEREO Observatories. Space Sci Rev 136, 437–486 (2008). https://doi.org/10.1007/s11214-007-9296-x

Download citation

Keywords

  • STEREO
  • Solar wind
  • Plasma
  • Suprathermal
  • Composition
  • Time-of-flight spectrometer
  • Coronal mass ejections
  • Multipoint spacecraft observations