Advertisement

Space Science Reviews

, Volume 136, Issue 1–4, pp 285–362 | Cite as

The Low-Energy Telescope (LET) and SEP Central Electronics for the STEREO Mission

  • R. A. MewaldtEmail author
  • C. M. S. Cohen
  • W. R. Cook
  • A. C. Cummings
  • A. J. Davis
  • S. Geier
  • B. Kecman
  • J. Klemic
  • A. W. Labrador
  • R. A. Leske
  • H. Miyasaka
  • V. Nguyen
  • R. C. Ogliore
  • E. C. Stone
  • R. G. Radocinski
  • M. E. Wiedenbeck
  • J. Hawk
  • S. Shuman
  • T. T. von Rosenvinge
  • K. Wortman
Article

Abstract

The Low-Energy Telescope (LET) is one of four sensors that make up the Solar Energetic Particle (SEP) instrument of the IMPACT investigation for NASA’s STEREO mission. The LET is designed to measure the elemental composition, energy spectra, angular distributions, and arrival times of H to Ni ions over the energy range from ∼3 to ∼30 MeV/nucleon. It will also identify the rare isotope 3He and trans-iron nuclei with 30≤Z≤83. The SEP measurements from the two STEREO spacecraft will be combined with data from ACE and other 1-AU spacecraft to provide multipoint investigations of the energetic particles that result from interplanetary shocks driven by coronal mass ejections (CMEs) and from solar flare events. The multipoint in situ observations of SEPs and solar-wind plasma will complement STEREO images of CMEs in order to investigate their role in space weather. Each LET instrument includes a sensor system made up of an array of 14 solid-state detectors composed of 54 segments that are individually analyzed by custom Pulse Height Analysis System Integrated Circuits (PHASICs). The signals from four PHASIC chips in each LET are used by a Minimal Instruction Set Computer (MISC) to provide onboard particle identification of a dozen species in ∼12 energy intervals at event rates of ∼1,000 events/sec. An additional control unit, called SEP Central, gathers data from the four SEP sensors, controls the SEP bias supply, and manages the interfaces to the sensors and the SEP interface to the Instrument Data Processing Unit (IDPU). This article outlines the scientific objectives that LET will address, describes the design and operation of LET and the SEP Central electronics, and discusses the data products that will result.

Keywords

Space vehicles: instruments Instrumentation: detectors Sun: particle emission Sun: coronal mass ejections Sun: flares Acceleration of particles 

Acronyms and Abbreviations

ACE

Advanced Composition Explorer

ACR

Anomalous Cosmic Ray

ADC

Analog-to-Digital Converter

ALU

Arithmetic Logic Unit

ApID

Application process Identifier

ASCII

American Standard Code for Information Interchange

ASIC

Application Specific Integrated Circuit

C&DH

Command and Data Handling

CCSDS

Consultative Committee for Space Data Systems

CF

Correction Factor

CIR

Corotating Interaction Region

CME

Coronal Mass Ejection

CMOS

Complementary Metal Oxide Semiconductor

CNO

Carbon, Nitrogen, and Oxygen element group

CPU

Central Processing Unit

CPU24

GSFC version of MISC

CRIS

Cosmic Ray Isotope Spectrometer

CV

Capacitance (C) vs. Voltage (V)

DAC

Digital-to-Analog Converter

DC

Direct Current

DPU

Data Processing Unit

EEPROM

Electronically Erasable Programmable Read-Only Memory

EGSE

Electrical Ground Support Equipment

EM

Engineering Model

EOR

End of Record

EPAM

Electron, Proton, and Alpha Monitor

EPHIN

Electron Proton Helium Instrument (SoHO)

ERH

Event Record Header

ESA

European Space Agency

ESP

Energetic Storm Particles

EUV

Extreme Ultraviolet

E/M

Energy/nucleon

FET

Field Effect Transistor

FM1

Flight Model 1

FM2

Flight Model 2

FOV

Field Of View

FPGA

Field-Programmable Gate Array

FR4

Flame Resistant 4 (printed circuit board material)

F.S.

Full scale

GALEX

Galaxy Evolution Explorer

GCR

Galactic Cosmic Ray

GEANT

Geometry And Tracking (A toolkit for the simulation of particles through matter)

GOES

Geostationary Operational Environmental Satellite

GSE

Ground Support Equipment

GSFC

Goddard Space Flight Center

HAZ

“HAZard” event

HET

High Energy Telescope

HV

High Voltage

HVPS

High Voltage Power Supply

I/F

Interface

I/O

Input/Output

ICD

Interface Control Document

ICME

Interplanetary Coronal Mass Ejection

ID

Identification

IDPU

IMPACT Data Processing Unit

IMF

Interplanetary Magnetic Field

IMP

Interplanetary Monitoring Platform

IMPACT

In situ Measurements of Particles And CME Transients

ISEE-3

International Sun-Earth Explorer 3

ISM

Interstellar Medium

IT

Information Technology

ITAR

International Traffic in Arms Regulations

ITO

Indium Tin Oxide

IV

Leakage current (I) vs. Voltage (V)

JPL

Jet Propulsion Laboratory

LBL

Lawrence Berkeley Laboratory

LEMT

Low Energy Matrix Telescope

LET

Low Energy Telescope

LiBeB

Lithium, Beryllium, and Boron element group

LVPS

Low Voltage Power Supply

MAG

Magnetometer

MISC

Minimal Instruction Set Computer

MRD

Mission Requirements Document

MSU

Michigan State University

NASA

National Aeronautics and Space Administration

NASTRAN

NASA Structural Analysis system

NeMgSi

Neon, Magnesium, and Silicon element group

NOAA

National Oceanic and Atmospheric Administration

NSCL

National Superconducting Cyclotron Laboratory

OGO

Orbiting Geophysical Observatory

PDFE

Particle Detector Front End

PEN

Penetrating event

PHA

Pulse Height Analyzer

PHASIC

Pulse Height Analysis System Integrated Circuit

PLASTIC

Plasma And Suprathermal Ion Composition

PSI

Pounds per Square Inch

RHESSI

Ramaty High Energy Solar Spectroscopic Imager

RISC

Reduced Instruction Set Computer

RTSW

Real-Time Solar Wind

SAMPEX

Solar, Anomalous, and Magnetospheric Particle Explorer

SDO

Solar Dynamics Observatory

SECCHI

Sun Earth Connection Coronal and Heliospheric Investigation

SEP

Solar Energetic Particle

SEPT

Solar Electron Proton Telescope

SEPT-E

Ecliptic-viewing component of SEPT

SEPT-NS

North/South viewing component of SEPT

SIS

Solar Isotope Spectrometer

SIT

Suprathermal Ion Telescope

SOHO

Solar Heliospheric Observatory

SRAM

Static Random Access Memory

SRL

Space Radiation Laboratory

SSD

Solid-State Detector

STEREO

Solar Terrestrial Relations Observatory

STIM

Stimulated (pulser-produced) event

SWAVES

STEREO/WAVES Radio and Plasma Wave Experiment

TCP/IP

Transmission Control Protocol/Internet Protocol

TOF

Time Of Flight

UCB

University of California Berkeley

UH

Ultra-Heavy

ULEIS

Ultra-Low Energy Isotope Spectrometer

UT

Universal Time

VLSI

Very Large Scale Integration

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.E. Althouse et al., IEEE Trans. Geosci. Electron. GE-16, 204 (1978) ADSGoogle Scholar
  2. J.-L. Bougeret et al., Space Sci. Rev. (2007, this issue) Google Scholar
  3. L.F. Burlaga et al., Science 309, 2027 (2005) ADSGoogle Scholar
  4. CCSDS, in Packet Telemetry Recommendation for Space Data System Standards (CCSDS, Washington, 2000). 102.0-B-5, Blue Book, Issue5 Google Scholar
  5. H.V. Cane, D. Lario, Space Sci. Rev. (2006). doi: 10.1007/s11214-006-9011-3 Google Scholar
  6. H.V. Cane, W.C. Erickson, N.P. Prestage, J. Geophys. Res. (2002). doi: 10.1029/2001JA000320 Google Scholar
  7. H.V. Cane et al., Geophys. Res. Lett. (2003). doi: 10.1029/2002GL016580 Google Scholar
  8. H.V. Cane et al., J. Geophys. Res. (2006). doi: 10.1029/2005JA011071 Google Scholar
  9. C.M.S. Cohen et al., Geophys. Res. Lett. 26, 2697 (1999) ADSGoogle Scholar
  10. C.M.S. Cohen et al., J. Geophys. Res. (2005). doi: 10.1029/2005JA011004 ADSGoogle Scholar
  11. C.M.S. Cohen et al., Space Sci. Rev. (2007). doi: 10.1007/s11214-007-9218-y Google Scholar
  12. W.R. Cook et al., Custom analog VLSI for the Advanced Composition Explorer (ACE), small instruments for space physics, in Proceedings of the Small Instrument Workshop, held 29–31 March, 1993 in Pasadena, CA, ed. by B.T. Tsurutani (National Aeronautics and Space Division, Washington, 1993), p. 7 Google Scholar
  13. A.C. Cummings, E.C. Stone, C.D. Steenberg, Astrophys. J. 578, 194 (2002) ADSGoogle Scholar
  14. M.I. Desai et al., Astrophys. J. 649, 470 (2006) ADSGoogle Scholar
  15. W. Dröge et al., Astrophys. J. 645, 1516 (2006) ADSGoogle Scholar
  16. J.R. Dwyer et al., Astrophys. J. 563, 403 (2001) ADSGoogle Scholar
  17. L.A. Fisk, B. Koslovsky, R. Ramaty, Astrophys. J. Lett. 190, L35 (1974) ADSGoogle Scholar
  18. A.B. Galvin et al., Space Sci. Rev. (2007, this issue) Google Scholar
  19. J. Giacalone, J.R. Jokipii, J.E. Mazur, Astrophys. J. 532, L75 (2000) ADSGoogle Scholar
  20. G. Gloeckler, Space Sci. Rev. 89, 91 (1999) ADSGoogle Scholar
  21. D.K. Haggerty, E.C. Roelof, in 27th International Cosmic Ray Conference, ed. by W. Dröge, H. Kunow, M. Scholer (Schaltungsdienst Lange o.H.G., Berlin, 2001), p. 3238 Google Scholar
  22. D.K. Haggerty, E.C. Roelof, Astrophys. J. 579, 841 (2002) ADSGoogle Scholar
  23. E. Halpern, J.H. Marshall, IEEE Trans. Nucl. Sci. NS-15, 242 (1968) ADSGoogle Scholar
  24. E. Halpern, J.H. Marshall, D. Weeks, Nucleonics in Aerospace (Plenum, New York, 1968), p. 98 Google Scholar
  25. T.M. Harrington, J.H. Marshall, Rev. Sci. Instrum. 39, 184 (1968) ADSGoogle Scholar
  26. T.M. Harrington, J.H. Marshall, IEEE Trans. Nucl. Sci. NS-16, 314 (1969) CrossRefADSGoogle Scholar
  27. T.M. Harrington et al., Nucl. Instrum. Methods 118, 401 (1974) ADSGoogle Scholar
  28. G.C. Ho, E.C. Roelof, G.M. Mason, Astrophys. J. 621, L141 (2005) ADSGoogle Scholar
  29. J.L. Hoff, L.W. Townsend, J.W. Hines, IEEE Trans. Nucl. Sci. 50, 2296 (2003) ADSGoogle Scholar
  30. R.A. Howard et al., Space Sci. Rev. (2007, this issue) Google Scholar
  31. J.F. Janni, Technical report No. AFWL-TR-65-150, Air Force Weapons Laboratory, Kirtland Air Force Base, NM, 1966 Google Scholar
  32. S.W. Kahler, A. Vourlidas, J. Geophys. Res. (2005). doi: 10.1029/2006JA011073 Google Scholar
  33. A. Klassen et al., J. Geophys. Res. 110 (2005). CiteID A09S04 Google Scholar
  34. B. Klecker et al., Adv. Space Res. 38, 493 (2006) ADSGoogle Scholar
  35. S. Krucker, R.P. Lin, Astrophys. J. 542, L61 (2000) ADSGoogle Scholar
  36. A.W. Labrador et al., in 28th International Cosmic Ray Conference, ed. by T. Kajta, Y. Asaoka, A. Kawachi, Y. Matsubara, M. Sasaki (Universal Academy Press, Inc., Tokyo, 2003), p. 3269 Google Scholar
  37. A.W. Labrador et al., in 29th International Cosmic Ray Conference, vol. 1, ed. by B. Sripathi et al. (Tata Institute of Fundamental Research, Mumbai, 2005), p. 99 Google Scholar
  38. R.A. Leske et al., in Acceleration and Transport of Energetic Particles Observed in the Heliosphere, ed. by R.A. Mewaldt et al. (AIP, Melville, 2000), p. 293 Google Scholar
  39. R.A. Leske et al., in Connecting Sun and Heliosphere, ed. by B. Fleck, T.H. Zurbuchen, H. Lacoste (ESA, Whistler, 2003a), p. 616 Google Scholar
  40. R.A. Leske et al., in 28th International Cosmic Ray Conference, ed. by T. Kajta, Y. Asaoka, A. Kawachi, Y. Matsubara, M. Sasaki (Universal Academy Press, Inc., Tokyo, 2003b), p. 3253 Google Scholar
  41. R.A. Leske et al., Space Sci. Rev. (2007a). doi: 10.1007/s11214-007-9191-5 Google Scholar
  42. R.A. Leske et al., Space Sci. Rev. (2007b). doi: 10.1007/s11214-007-9185-3 Google Scholar
  43. G. Li, G.P. Zank, W.K.M. Rice, J. Geophys. Res. (2005). doi: 10.1029/2004JA010600 Google Scholar
  44. R.P. Lin et al., Space Sci. Rev. (2007, this issue) Google Scholar
  45. J.G. Luhmann et al., Adv. Space Res. 36, 1534 (2005) ADSGoogle Scholar
  46. J.G. Luhmann et al., Space Sci. Rev. (2007, this issue). doi: 10.1007/s11214-007-9170-x Google Scholar
  47. G.M. Mason, G. Gloeckler, D. Hovestadt, Astrophys. J. 280, 902 (1984) ADSGoogle Scholar
  48. G.M. Mason, J.E. Mazur, D.C. Hamilton, Astrophys. J. 425, 843 (1994) ADSGoogle Scholar
  49. G.M. Mason et al., Astrophys. J. 486, L149 (1997) ADSGoogle Scholar
  50. G.M. Mason et al., Geophys. Res. Lett. 26, 141 (1999) ADSGoogle Scholar
  51. G.M. Mason, J.R. Dwyer, J.E. Mazur, Astrophys. J. 545, L157 (2000) ADSGoogle Scholar
  52. G.M. Mason et al., Astrophys. J. 574, 1039 (2002) ADSGoogle Scholar
  53. G.M. Mason, J.E. Mazur, J.R. Dwyer, Astrophys. J. 565, L51 (2002) ADSGoogle Scholar
  54. G.M. Mason et al., Astrophys. J. 606, 555 (2004) ADSGoogle Scholar
  55. G.M. Mason et al., Space Sci. Rev. (2007, this issue). doi: 10.1007/s11214-006-9087-9 Google Scholar
  56. J.E. Mazur et al., Geophys. Res. Lett. 26, 173 (1999) ADSGoogle Scholar
  57. J.E. Mazur et al., Astrophys. J. 532, L79 (2000) ADSGoogle Scholar
  58. J.E. Mazur, G.M. Mason, R.A. Mewaldt, Astrophys. J. 566, 555 (2002) ADSGoogle Scholar
  59. F.B. McDonald et al., in 29th International Cosmic Ray Conference, vol. 2, ed. by B. Sripathi Acharya et al. (Tata Institute of Fundamental Research, Mumbai, 2005), p. 35 Google Scholar
  60. D.J. McComas, N.A. Schwadron, Geophys. Res. Lett. (2006). doi: 10.1029/2005GL025437 Google Scholar
  61. M.A. McMahan, Nucl. Instr. Methods Phys. Res. B241, 409 (2005) ADSGoogle Scholar
  62. R.A. Mewaldt, in 26th International Cosmic Ray Conference, Invited, Rapporteur, and Highlight Papers, ed. by B.L. Dingus, D.B. Kieda, M.H. Salamon (AIP, Melville, 2000), p. 265 Google Scholar
  63. R.A. Mewaldt et al., in 28th International Cosmic Ray Conference, ed. by T. Kajta, Y. Asaoka, A. Kawachi, Y. Matsubara, M. Sasaki (Universal Academy Press, Inc., Tokyo, 2003), p. 3313 Google Scholar
  64. R.A. Mewaldt et al., in Proc. 29th International Cosmic Ray Conf., vol. 1, ed. by B. Sripathi Acharya et al. (Tata Institute of Fundamental Research, Mumbai, 2005a), p. 57 Google Scholar
  65. R.A. Mewaldt et al., J. Geophys. Res. (2005b). doi: 10.1029/2005JA011038 Google Scholar
  66. R.A. Mewaldt et al., in The Physics of Collisionless Shocks, ed. by G. Li, G.P. Zank, C.T. Russell (AIP, Melville, 2005c), p. 227 Google Scholar
  67. R.A. Mewaldt et al., in Connecting Sun and Heliosphere, ed. by B. Fleck, T.H. Zurbuchen, H. Lacoste (ESA, Whistler, 2005d), p. 67 Google Scholar
  68. R.A. Mewaldt, C.M.S. Cohen, G.M. Mason, in Solar Eruptions and Energetic Particles, ed. by N. Gopalswamy, R.A. Mewaldt, J. Torsti (AGU, Washington, 2006), p. 115 Google Scholar
  69. R.A. Mewaldt, Space Sci. Rev. (2006). doi: 10.1007/s11214-006-9091-0 Google Scholar
  70. R.A. Mewaldt et al., Space Sci. Rev. (2007). doi: 10.1007/s11214-007-9200-8 Google Scholar
  71. E. Möbius et al., Geophys. Res. Lett. (2002). doi: 10.1029/2001GL013410 Google Scholar
  72. H. Moraal et al., in Physics of the Heliosheath, ed. by J. Heerikhusen, V. Florinski, G.P. Zank, N.V. Pogorelov (AIP, Melville, 2006), p. 219 Google Scholar
  73. R. Müller-Mellin et al., Space Sci. Rev. (2007, this issue). doi: 10.1007/s11214-007-9204-4 Google Scholar
  74. J.S. Neal, L.W. Townsend, Radiat. Prot. Dosim. 115, 38 (2005) Google Scholar
  75. N.V. Nitta et al., Astrophys. J. (2006). doi: 10.1086/507442 Google Scholar
  76. T.G. Onsager et al., in GOES-8 and Beyond, SPIE Conference Proceedings, ed. by E.R. Washwell (SPIE, Bellingham, 1996), pp. 281–290 Google Scholar
  77. M.E. Pesses, J.R. Jokipii, D. Eichler, Astrophys. J. Lett. 246, L85 (1981) ADSGoogle Scholar
  78. V.S. Ptuskin, Space Sci. Rev. 99, 281 (2001) ADSGoogle Scholar
  79. D.V. Reames, Adv. Space Res. 13, 331 (1993) ADSGoogle Scholar
  80. D.V. Reames, Adv. Space Res. 15, 41 (1995) ADSGoogle Scholar
  81. D.V. Reames, Space Sci. Rev. 90, 413 (1999) ADSGoogle Scholar
  82. D.V. Reames, C.K. Ng, Astrophys. J. 610, 510 (2004) ADSGoogle Scholar
  83. D.V. Reames, T.T. von Rosenvinge, R.P. Lin, Astrophys. J. 292, 716 (1985) ADSGoogle Scholar
  84. D.V. Reames, R.G. Stone, M.-B. Kallenrode, Astrophys. J. 380, 287 (1991) ADSGoogle Scholar
  85. D.V. Reames, J.-P. Meyer, T.T. von Rosenvinge, Astrophys. J. Suppl. 90, 649 (1994) ADSGoogle Scholar
  86. D.V. Reames et al., Geophys. Res. Lett. 24, 2917 (1997) ADSGoogle Scholar
  87. D.V. Reames, C.K. Ng, D. Berdichevsky, Astrophys. J. 550, 1064 (2001) ADSGoogle Scholar
  88. W.K.M. Rice, G.P. Zank, G. Li, J. Geophys. Res. (2003). doi: 10.1029/2002JA009756 Google Scholar
  89. I.G. Richardson, Space Sci. Rev. 111, 267 (2004) ADSGoogle Scholar
  90. N.A. Schwadron et al., Geophys. Res. Lett. (2002). doi: 10.1029/2002GL015829 Google Scholar
  91. R. Schwenn, E. Marsch, Physics of the Inner Heliosphere I and II (Springer, Berlin, 1991) Google Scholar
  92. J.D. Slavin, P.C. Frisch, Astrophys. J. 565, 364 (2002) ADSGoogle Scholar
  93. E.C. Stone et al., Space Sci. Rev. 86, 1 (1998a) ADSGoogle Scholar
  94. E.C. Stone et al., Space Sci. Rev. 86, 357 (1998b) ADSGoogle Scholar
  95. E.C. Stone et al., Space Sci. Rev. 86, 285 (1998c) ADSGoogle Scholar
  96. E.C. Stone et al., Science 309, 2017 (2005) ADSGoogle Scholar
  97. R.E. Turner, in Solar Eruptions and Energetic Particles, ed. by N. Gopalswamy, A. Mewaldt, J. Torsti (AGU, Washington, 2006), p. 367 Google Scholar
  98. A.J. Tylka, W.F. Dietrich, P.R. Boberg, IEEE Trans. Nucl. Sci. 44, 2140 (1997) ADSGoogle Scholar
  99. A.J. Tylka et al., Astrophys. J. 558, L59 (2001) ADSGoogle Scholar
  100. A.J. Tylka et al., in 28th International Cosmic Ray Conference, ed. by T. Kajta, Y. Asaoka, A. Kawachi, Y. Matsubara, M. Sasaki (Universal Academy Press, Inc., Tokyo, 2003), p. 3305 Google Scholar
  101. A.J. Tylka et al., Astrophys. J. 625, 474 (2005) ADSGoogle Scholar
  102. J. Vandegriff et al., Adv. Space Res. 36, 2323 (2005) Google Scholar
  103. T.T. von Rosenvinge et al., in Solar and Galactic Composition, ed. by R.F. Wimmerschweingruber (AIP, Melville, 2001), p. 343 Google Scholar
  104. T.T. von Rosenvinge et al., Space Sci. Rev. (2007, this issue) Google Scholar
  105. A. Vourlidas et al., Astrophys. J. 534, 456 (2000) ADSGoogle Scholar
  106. Y.-M. Wang, M. Pick, G.M. Mason, Astrophys. J. 639, 495 (2006a) ADSGoogle Scholar
  107. L. Wang et al., Geophys. Res. Lett. (2006b). doi: 10.1029/2005GL024434 Google Scholar
  108. M.E. Wiedenbeck et al., in 28th International Cosmic Ray Conference, ed. by T. Kajta, Y. Asaoka, A. Kawachi, Y. Matsubara, M. Sasaki (Universal Academy Press, Inc., Tokyo, 2003), p. 3245 Google Scholar
  109. M. Zhang et al., in Physics of the Heliosheath, ed. by J. Heerikhusen, V. Florinski, G.P. Zank, N.V. Pogorelov (AIP, Melville, 2006), p. 226 Google Scholar
  110. R.D. Zwickl et al., Space Sci. Rev. 86, 633 (1998) ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • R. A. Mewaldt
    • 1
    Email author
  • C. M. S. Cohen
    • 1
  • W. R. Cook
    • 1
  • A. C. Cummings
    • 1
  • A. J. Davis
    • 1
  • S. Geier
    • 1
  • B. Kecman
    • 1
  • J. Klemic
    • 1
  • A. W. Labrador
    • 1
  • R. A. Leske
    • 1
  • H. Miyasaka
    • 1
  • V. Nguyen
    • 1
  • R. C. Ogliore
    • 1
  • E. C. Stone
    • 1
  • R. G. Radocinski
    • 2
  • M. E. Wiedenbeck
    • 2
  • J. Hawk
    • 3
  • S. Shuman
    • 3
  • T. T. von Rosenvinge
    • 3
  • K. Wortman
    • 3
  1. 1.California Institute of TechnologyPasadenaUSA
  2. 2.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  3. 3.NASA/Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations