Space Science Reviews

, Volume 131, Issue 1–4, pp 523–556 | Cite as

The Energetic Particle and Plasma Spectrometer Instrument on the MESSENGER Spacecraft

  • G. Bruce Andrews
  • Thomas H. Zurbuchen
  • Barry H. Mauk
  • Horace Malcom
  • Lennard A. Fisk
  • George Gloeckler
  • George C. Ho
  • Jeffrey S. Kelley
  • Patrick L. Koehn
  • Thomas W. LeFevere
  • Stefano S. Livi
  • Robert A. Lundgren
  • Jim M. Raines
Article

Abstract

The Energetic Particle and Plasma Spectrometer (EPPS) package on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury is composed of two sensors, the Energetic Particle Spectrometer (EPS) and the Fast Imaging Plasma Spectrometer (FIPS). EPS measures the energy, angular, and compositional distributions of the high-energy components of the in situ electrons (>20 keV) and ions (>5 keV/nucleon), while FIPS measures the energy, angular, and compositional distributions of the low-energy components of the ion distributions (<50 eV/charge to 20 keV/charge). Both EPS and FIPS have very small footprints, and their combined mass (∼3 kg) is significantly lower than that of comparable instruments.

Keywords

Plasma Spectrometer Ions Electrons Energy Time of flight MESSENGER Mercury 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.J. Anderson et al., Space Sci. Rev. (2007, this issue). doi:10.1007/s11214-007-9246-7 Google Scholar
  2. T.A. Bida, R.M. Killen, T.H. Morgan, Nature 404, 159–161 (2000) CrossRefADSGoogle Scholar
  3. S.P. Christon, in The Astronomy and Astrophysics Encyclopedia, ed. by S.P. Maran (Cambridge University Press, Cambridge, 1992), pp. 427–430 Google Scholar
  4. S.P. Christon, S.F. Daly, J.H. Eraker, M.A. Perkins, J.A. Simpson, A.J. Tuzzolino, J. Geophys. Res. 84, 4277–4288 (1979) ADSGoogle Scholar
  5. S.P. Christon, J. Feynman, J.A. Slavin, in Magnetotail Physics, ed. by A.T.Y. Lui (Johns Hopkins University Press, Baltimore, 1987), pp. 393–400 Google Scholar
  6. J.E.P. Connerney, N.F. Ness, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (University of Arizona Press, Tucson, 1988), pp. 494–513 Google Scholar
  7. G. Gloeckler, Rev. Sci. Instrum. 61, 3613–3620 (1990) CrossRefADSGoogle Scholar
  8. G. Gloeckler, K.C. Hsieh, Nucl. Instrum. Methoods 165, 537–544 (1979) CrossRefGoogle Scholar
  9. D.M. Hunten, T.H. Morgan, D.E. Shemansky, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (University of Arizona Press, Tucson, 1988), pp. 562–612 Google Scholar
  10. W.-H. Ip, Astrophys. J. 356, 675–681 (1990) CrossRefADSGoogle Scholar
  11. K. Kabin, T.I. Gombosi, D.L. DeZeeuw, K.G. Powell, Icarus 143, 397–406 (2000) CrossRefADSGoogle Scholar
  12. P.L. Koehn, Ph.D. thesis, University of Michigan, Ann Arbor, 2002, 183 pp Google Scholar
  13. J.C. Leary et al., Space Sci. Rev. (2007, this issue). doi:10.1007/s11214-007-9269-0 Google Scholar
  14. C. Martin, P. Jelinsky, M. Lampton, R.F. Malina, H.O. Anger, Rev. Sci. Instrum. 52, 1067–1074 (1981) CrossRefADSGoogle Scholar
  15. B.H. Mauk, C.-I. Meng, in Solar System Plasma Physics, ed. by J.H. Waite, J.L. Burch, R.L. Moore. Geophysical Monograph, vol. 54 (American Geophysical Union, Washington, 1989), pp. 319–332 Google Scholar
  16. B.H. Mauk, D.J. Williams, R.W. McEntire, K.K. Khurana, J.G. Roederer, J. Geophys. Res. 104, 22759–22778 (1999) CrossRefADSGoogle Scholar
  17. W.E. McClintock, M.R. Lankton, Space Sci. Rev. (2007, this issue). doi:10.1007/s11214-007-9264-5 Google Scholar
  18. A.E. Potter, T.H. Morgan, Icarus 71, 472–477 (1987) CrossRefADSGoogle Scholar
  19. C.T. Russell, D.N. Baker, J.A. Slavin, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (University of Arizona Press, Tucson, 1988), pp. 514–561 Google Scholar
  20. B. Schubert, M.N. Ross, D.J. Stevenson, T. Spohn, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (University of Arizona Press, Tucson, 1988), pp. 429–460 Google Scholar
  21. R. Schwenn, in Physics of the Inner Heliosphere I, ed. by R. Schwenn, E. Marsch (Springer, Berlin, 1990), pp. 99–182 Google Scholar
  22. M.A. Slade, B.J. Butler, D.O. Muhleman, Science 258, 635–640 (1992) CrossRefADSGoogle Scholar
  23. S.C. Solomon et al., Planet. Space Sci. 49, 1445–1465 (2001) CrossRefADSGoogle Scholar
  24. A.L. Sprague, D.M. Hunten, K. Lodders, Icarus 118, 211–215 (1995) CrossRefADSGoogle Scholar
  25. A.R. Vasavada, D.A. Paige, S.E. Wood, Icarus 141, 179–193 (1999) CrossRefADSGoogle Scholar
  26. D.J. Williams et al., Geophys. Res. Lett. 24, 2163–2166 (1997) CrossRefADSGoogle Scholar
  27. T.H. Zurbuchen, G. Gloeckler, J.C. Cain, S.E. Lasley, W. Shanks, in Conference on Missions to the Sun II, ed. by C.M. Korendyke. Proceedings of the Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., vol. 3442, 1998, pp. 217–224 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • G. Bruce Andrews
    • 1
  • Thomas H. Zurbuchen
    • 2
  • Barry H. Mauk
    • 1
  • Horace Malcom
    • 1
  • Lennard A. Fisk
    • 2
  • George Gloeckler
    • 2
    • 3
  • George C. Ho
    • 1
  • Jeffrey S. Kelley
    • 1
  • Patrick L. Koehn
    • 2
  • Thomas W. LeFevere
    • 1
  • Stefano S. Livi
    • 1
  • Robert A. Lundgren
    • 2
  • Jim M. Raines
    • 2
  1. 1.The Johns Hopkins University Applied Physics LaboratoryLaurelUSA
  2. 2.Department of Atmospheric, Oceanic and Space SciencesUniversity of MichiganAnn ArborUSA
  3. 3.University of MarylandCollege ParkUSA

Personalised recommendations