Space Science Reviews

, Volume 131, Issue 1–4, pp 247–338

The Mercury Dual Imaging System on the MESSENGER Spacecraft

  • S. Edward HawkinsIII
  • John D. Boldt
  • Edward H. Darlington
  • Raymond Espiritu
  • Robert E. Gold
  • Bruce Gotwols
  • Matthew P. Grey
  • Christopher D. Hash
  • John R. Hayes
  • Steven E. Jaskulek
  • Charles J. KardianJr.
  • Mary R. Keller
  • Erick R. Malaret
  • Scott L. Murchie
  • Patricia K. Murphy
  • Keith Peacock
  • Louise M. Prockter
  • R. Alan Reiter
  • Mark S. Robinson
  • Edward D. Schaefer
  • Richard G. Shelton
  • Raymond E. SternerII
  • Howard W. Taylor
  • Thomas R. Watters
  • Bruce D. Williams
Article

Abstract

The Mercury Dual Imaging System (MDIS) on the MESSENGER spacecraft will provide critical measurements tracing Mercury’s origin and evolution. MDIS consists of a monochrome narrow-angle camera (NAC) and a multispectral wide-angle camera (WAC). The NAC is a 1.5° field-of-view (FOV) off-axis reflector, coaligned with the WAC, a four-element refractor with a 10.5° FOV and 12-color filter wheel. The focal plane electronics of each camera are identical and use a 1,024×1,024 Atmel (Thomson) TH7888A charge-coupled device detector. Only one camera operates at a time, allowing them to share a common set of control electronics. The NAC and the WAC are mounted on a pivoting platform that provides a 90° field-of-regard, extending 40° sunward and 50° anti-sunward from the spacecraft +Z-axis—the boresight direction of most of MESSENGER’s instruments. Onboard data compression provides capabilities for pixel binning, remapping of 12-bit data into 8 bits, and lossless or lossy compression. MDIS will acquire four main data sets at Mercury during three flybys and the two-Mercury-solar-day nominal mission: a monochrome global image mosaic at near-zero emission angles and moderate incidence angles, a stereo-complement map at off-nadir geometry and near-identical lighting, multicolor images at low incidence angles, and targeted high-resolution images of key surface features. These data will be used to construct a global image base map, a digital terrain model, global maps of color properties, and mosaics of high-resolution image strips. Analysis of these data will provide information on Mercury’s impact history, tectonic processes, the composition and emplacement history of volcanic materials, and the thickness distribution and compositional variations of crustal materials. This paper summarizes MDIS’s science objectives and technical design, including the common payload design of the MDIS data processing units, as well as detailed results from ground and early flight calibrations and plans for Mercury image products to be generated from MDIS data.

Keywords

MESSENGER Mercury Imaging Camera Imager CCD Heat pipe Wax pack Photometry Stereo 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.B. Andrews et al., Space Sci. Rev. (2007, this issue). doi:10.1007/s11214-007-9272-5 Google Scholar
  2. D.T. Blewett, P.G. Lucey, B.R. Hawke, G.G. Ling, M.S. Robinson, Icarus 129, 217–231 (1997) CrossRefADSGoogle Scholar
  3. J.F. Cavanaugh et al., Space Sci. Rev. (2007, this issue). doi:10.1007/s11214-007-9273-4 Google Scholar
  4. B.M. Cordell, R.G. Strom, Phys. Earth Planet. Interiors 15, 146–155 (1977) CrossRefADSGoogle Scholar
  5. E.H. Darlington, M.P. Grey, Proc. SPIE 4498, 197–206 (2001) CrossRefADSGoogle Scholar
  6. R.E. Gold, R.L. McNutt Jr., S.C. Solomon, the MESSENGER Team, in Proceedings of the 5th International Academy of Astronautics International Conference on Low-Cost Planetary Missions, ed. by R.A. Harris. Special Publication SP-542 (European Space Agency, Noordwijk, 2003), pp. 399–405 Google Scholar
  7. O.L. Hansen, Astrophys. J. 190, 715–717 (1974) CrossRefADSGoogle Scholar
  8. J.K. Harmon, M.A. Slade, Science 258, 640–643 (1992) CrossRefADSGoogle Scholar
  9. J.K. Harmon, P.J. Perillat, M.A. Slade, Icarus 149, 1–15 (2001) CrossRefADSGoogle Scholar
  10. S.E. Hawkins, III et al., Space Sci. Rev. 82, 31–100 (1997) CrossRefADSGoogle Scholar
  11. M.E. Holdridge, A.B. Calloway, Space Sci. Rev. (2007, this issue). doi:10.1007/s11214-007-9261-8 Google Scholar
  12. J.R. Janesick, Scientific Charge-Coupled Devices. SPIE Press Monograph PM83 (SPIE, Bellingham, WA, 2001), 920 pp Google Scholar
  13. W.S. Kiefer, B.C. Murray, Icarus 72, 477–491 (1987) CrossRefADSGoogle Scholar
  14. J.C. Leary et al., Space Sci. Rev. (2007, this issue). doi:10.1007/s11214-007-9269-0 Google Scholar
  15. J.S. Lewis, Earth Planet. Sci. Lett. 15, 286–290 (1972) CrossRefADSGoogle Scholar
  16. J.S. Lewis, Ann. Rev. Phys. Chem. 24, 339–351 (1974) CrossRefADSGoogle Scholar
  17. H. Li, M.S. Robinson, S. Murchie, Icarus 155, 244–252 (2002) CrossRefADSGoogle Scholar
  18. H.J. Melosh, D. Dzurisin, Icarus 35, 227–236 (1978) CrossRefADSGoogle Scholar
  19. H.J. Melosh, W.B. McKinnon, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (University of Arizona Press, Tucson, 1988), pp. 374–400 Google Scholar
  20. S. Murchie et al., Icarus 140, 66–91 (1999) CrossRefADSGoogle Scholar
  21. S. Murchie et al., Icarus 155, 229–243 (2002) CrossRefADSGoogle Scholar
  22. B.C. Murray, J. Geophys. Res. 80, 2342–2344 (1975) ADSGoogle Scholar
  23. B.C. Murray, R.G. Strom, N.J. Trask, D.E. Gault, J. Geophys. Res. 80, 2508–2514 (1975) ADSGoogle Scholar
  24. J.B. Pechmann, H.J. Melosh, Icarus 38, 243–250 (1979) CrossRefADSGoogle Scholar
  25. A. Potter, T.H. Morgan, Science 229, 651–653 (1985) CrossRefADSGoogle Scholar
  26. A. Potter, T.H. Morgan, Icarus 67, 336–340 (1986) CrossRefADSGoogle Scholar
  27. B. Rava, B. Hapke, Icarus 71, 397–429 (1987) CrossRefADSGoogle Scholar
  28. M.S. Robinson, P.G. Lucey, Science 275, 197–200 (1997) CrossRefADSGoogle Scholar
  29. M.S. Robinson, J.G. Taylor, Meteorit. Planet. Sci. 36, 841–847 (2001) ADSCrossRefGoogle Scholar
  30. M.A. Slade, B.J. Butler, D.O. Muhleman, Science 258, 635–640 (1992) CrossRefADSGoogle Scholar
  31. S.C. Solomon et al., Planet. Space Sci. 49, 1445–1465 (2001) CrossRefADSGoogle Scholar
  32. P.D. Spudis, J.E. Guest, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (University of Arizona Press, Tucson, 1988), pp. 118–164 Google Scholar
  33. R.G. Strom, Phys. Earth Planet. Interiors 15, 156–172 (1977) CrossRefADSGoogle Scholar
  34. R.G. Strom, N.J. Trask, J.E. Guest, J. Geophys. Res. 80, 2478–2507 (1975) ADSGoogle Scholar
  35. N.J. Trask, J.E. Guest, J. Geophys. Res. 80, 2462–2477 (1975) ADSGoogle Scholar
  36. F. Vilas, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (University of Arizona Press, Tucson, 1988), pp. 59–76. Google Scholar
  37. T.R. Watters, M.S. Robinson, C.R. Bina, P.D. Spudis, Geophys. Res. Lett. 31, L04701 (2004) CrossRefGoogle Scholar
  38. G.W. Wetherill, Geochim. Cosmochim. Acta 58, 4513–4520 (1994) CrossRefADSGoogle Scholar
  39. D.E. Wilhelms, Icarus 28, 551–558 (1976) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • S. Edward HawkinsIII
    • 1
  • John D. Boldt
    • 1
  • Edward H. Darlington
    • 1
  • Raymond Espiritu
    • 2
  • Robert E. Gold
    • 1
  • Bruce Gotwols
    • 1
  • Matthew P. Grey
    • 1
  • Christopher D. Hash
    • 2
  • John R. Hayes
    • 1
  • Steven E. Jaskulek
    • 1
  • Charles J. KardianJr.
    • 1
  • Mary R. Keller
    • 1
  • Erick R. Malaret
    • 2
  • Scott L. Murchie
    • 1
  • Patricia K. Murphy
    • 1
  • Keith Peacock
    • 1
  • Louise M. Prockter
    • 1
  • R. Alan Reiter
    • 1
  • Mark S. Robinson
    • 3
  • Edward D. Schaefer
    • 1
  • Richard G. Shelton
    • 1
  • Raymond E. SternerII
    • 1
  • Howard W. Taylor
    • 1
  • Thomas R. Watters
    • 4
  • Bruce D. Williams
    • 1
  1. 1.The Johns Hopkins University Applied Physics LaboratoryLaurelUSA
  2. 2.Applied Coherent TechnologyHerndonUSA
  3. 3.School of Earth and Space ExplorationArizona State UniversityTempeUSA
  4. 4.Center for Earth and Planetary Studies, National Air and Space MuseumSmithsonian InstitutionWashingtonUSA

Personalised recommendations