Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The Mercury Dual Imaging System on the MESSENGER Spacecraft

Abstract

The Mercury Dual Imaging System (MDIS) on the MESSENGER spacecraft will provide critical measurements tracing Mercury’s origin and evolution. MDIS consists of a monochrome narrow-angle camera (NAC) and a multispectral wide-angle camera (WAC). The NAC is a 1.5° field-of-view (FOV) off-axis reflector, coaligned with the WAC, a four-element refractor with a 10.5° FOV and 12-color filter wheel. The focal plane electronics of each camera are identical and use a 1,024×1,024 Atmel (Thomson) TH7888A charge-coupled device detector. Only one camera operates at a time, allowing them to share a common set of control electronics. The NAC and the WAC are mounted on a pivoting platform that provides a 90° field-of-regard, extending 40° sunward and 50° anti-sunward from the spacecraft +Z-axis—the boresight direction of most of MESSENGER’s instruments. Onboard data compression provides capabilities for pixel binning, remapping of 12-bit data into 8 bits, and lossless or lossy compression. MDIS will acquire four main data sets at Mercury during three flybys and the two-Mercury-solar-day nominal mission: a monochrome global image mosaic at near-zero emission angles and moderate incidence angles, a stereo-complement map at off-nadir geometry and near-identical lighting, multicolor images at low incidence angles, and targeted high-resolution images of key surface features. These data will be used to construct a global image base map, a digital terrain model, global maps of color properties, and mosaics of high-resolution image strips. Analysis of these data will provide information on Mercury’s impact history, tectonic processes, the composition and emplacement history of volcanic materials, and the thickness distribution and compositional variations of crustal materials. This paper summarizes MDIS’s science objectives and technical design, including the common payload design of the MDIS data processing units, as well as detailed results from ground and early flight calibrations and plans for Mercury image products to be generated from MDIS data.

This is a preview of subscription content, log in to check access.

References

  1. G.B. Andrews et al., Space Sci. Rev. (2007, this issue). doi:10.1007/s11214-007-9272-5

  2. D.T. Blewett, P.G. Lucey, B.R. Hawke, G.G. Ling, M.S. Robinson, Icarus 129, 217–231 (1997)

  3. J.F. Cavanaugh et al., Space Sci. Rev. (2007, this issue). doi:10.1007/s11214-007-9273-4

  4. B.M. Cordell, R.G. Strom, Phys. Earth Planet. Interiors 15, 146–155 (1977)

  5. E.H. Darlington, M.P. Grey, Proc. SPIE 4498, 197–206 (2001)

  6. R.E. Gold, R.L. McNutt Jr., S.C. Solomon, the MESSENGER Team, in Proceedings of the 5th International Academy of Astronautics International Conference on Low-Cost Planetary Missions, ed. by R.A. Harris. Special Publication SP-542 (European Space Agency, Noordwijk, 2003), pp. 399–405

  7. O.L. Hansen, Astrophys. J. 190, 715–717 (1974)

  8. J.K. Harmon, M.A. Slade, Science 258, 640–643 (1992)

  9. J.K. Harmon, P.J. Perillat, M.A. Slade, Icarus 149, 1–15 (2001)

  10. S.E. Hawkins, III et al., Space Sci. Rev. 82, 31–100 (1997)

  11. M.E. Holdridge, A.B. Calloway, Space Sci. Rev. (2007, this issue). doi:10.1007/s11214-007-9261-8

  12. J.R. Janesick, Scientific Charge-Coupled Devices. SPIE Press Monograph PM83 (SPIE, Bellingham, WA, 2001), 920 pp

  13. W.S. Kiefer, B.C. Murray, Icarus 72, 477–491 (1987)

  14. J.C. Leary et al., Space Sci. Rev. (2007, this issue). doi:10.1007/s11214-007-9269-0

  15. J.S. Lewis, Earth Planet. Sci. Lett. 15, 286–290 (1972)

  16. J.S. Lewis, Ann. Rev. Phys. Chem. 24, 339–351 (1974)

  17. H. Li, M.S. Robinson, S. Murchie, Icarus 155, 244–252 (2002)

  18. H.J. Melosh, D. Dzurisin, Icarus 35, 227–236 (1978)

  19. H.J. Melosh, W.B. McKinnon, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (University of Arizona Press, Tucson, 1988), pp. 374–400

  20. S. Murchie et al., Icarus 140, 66–91 (1999)

  21. S. Murchie et al., Icarus 155, 229–243 (2002)

  22. B.C. Murray, J. Geophys. Res. 80, 2342–2344 (1975)

  23. B.C. Murray, R.G. Strom, N.J. Trask, D.E. Gault, J. Geophys. Res. 80, 2508–2514 (1975)

  24. J.B. Pechmann, H.J. Melosh, Icarus 38, 243–250 (1979)

  25. A. Potter, T.H. Morgan, Science 229, 651–653 (1985)

  26. A. Potter, T.H. Morgan, Icarus 67, 336–340 (1986)

  27. B. Rava, B. Hapke, Icarus 71, 397–429 (1987)

  28. M.S. Robinson, P.G. Lucey, Science 275, 197–200 (1997)

  29. M.S. Robinson, J.G. Taylor, Meteorit. Planet. Sci. 36, 841–847 (2001)

  30. M.A. Slade, B.J. Butler, D.O. Muhleman, Science 258, 635–640 (1992)

  31. S.C. Solomon et al., Planet. Space Sci. 49, 1445–1465 (2001)

  32. P.D. Spudis, J.E. Guest, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (University of Arizona Press, Tucson, 1988), pp. 118–164

  33. R.G. Strom, Phys. Earth Planet. Interiors 15, 156–172 (1977)

  34. R.G. Strom, N.J. Trask, J.E. Guest, J. Geophys. Res. 80, 2478–2507 (1975)

  35. N.J. Trask, J.E. Guest, J. Geophys. Res. 80, 2462–2477 (1975)

  36. F. Vilas, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (University of Arizona Press, Tucson, 1988), pp. 59–76.

  37. T.R. Watters, M.S. Robinson, C.R. Bina, P.D. Spudis, Geophys. Res. Lett. 31, L04701 (2004)

  38. G.W. Wetherill, Geochim. Cosmochim. Acta 58, 4513–4520 (1994)

  39. D.E. Wilhelms, Icarus 28, 551–558 (1976)

Download references

Author information

Correspondence to S. Edward Hawkins III.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hawkins, S.E., Boldt, J.D., Darlington, E.H. et al. The Mercury Dual Imaging System on the MESSENGER Spacecraft. Space Sci Rev 131, 247–338 (2007). https://doi.org/10.1007/s11214-007-9266-3

Download citation

Keywords

  • MESSENGER
  • Mercury
  • Imaging
  • Camera
  • Imager
  • CCD
  • Heat pipe
  • Wax pack
  • Photometry
  • Stereo