Advertisement

Space Science Reviews

, Volume 131, Issue 1–4, pp 481–521 | Cite as

The Mercury Atmospheric and Surface Composition Spectrometer for the MESSENGER Mission

  • William E. McClintock
  • Mark R. Lankton
Article

Abstract

The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) is one of seven science instruments onboard the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft en route to the planet Mercury. MASCS consists of a small Cassegrain telescope with 257-mm effective focal length and a 50-mm aperture that simultaneously feeds an UltraViolet and Visible Spectrometer (UVVS) and a Visible and InfraRed Spectrograph (VIRS). UVVS is a 125-mm focal length, scanning grating, Ebert-Fastie monochromator equipped with three photomultiplier tube detectors that cover far ultraviolet (115–180 nm), middle ultraviolet (160–320 nm), and visible (250–600 nm) wavelengths with an average 0.6-nm spectral resolution. It will measure altitude profiles of known species in order to determine the composition and structure of Mercury’s exosphere and its variability and will search for previously undetected exospheric species. VIRS is a 210-mm focal length, fixed concave grating spectrograph equipped with a beam splitter that simultaneously disperses the spectrum onto a 512-element silicon visible photodiode array (300–1050 nm) and a 256-element indium-gallium-arsenide infrared photodiode array 850–1,450 nm. It will obtain maps of surface reflectance spectra with a 5-nm resolution in the 300–1,450 nm wavelength range that will be used to investigate mineralogical composition on spatial scales of 5 km. UVVS will also observe the surface in the far and middle ultraviolet at a 10-km or smaller spatial scale. This paper summarizes the science rationale and measurement objectives for MASCS, discusses its detailed design and its calibration requirements, and briefly outlines observation strategies for its use during MESSENGER orbital operations around Mercury.

Keywords

Atmosphere Exosphere Mercury MESSENGER Spectrometer Surface 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.B. Adams, T.B. McCord, Proc. Apollo 11 Lunar Sci. Conf., 1970, pp. 1937–1945 Google Scholar
  2. B.A. Anderson et al., Space Sci. Rev. (2007, this issue). doi: 10.1007/s11214-007-9246-7 Google Scholar
  3. G.B. Andrews et al., Space Sci. Rev. (2007, this issue). doi: 10.1007/s11214-007-9272-5 Google Scholar
  4. T.A. Bida, R.M. Killen, T.H. Morgan, Nature 404, 159–161 (2000) CrossRefADSGoogle Scholar
  5. D.T. Blewett, P.G. Lucey, B.R. Hawke, G.G. Ling, M.S. Robinson, Icarus 129, 217–231 (1997) CrossRefADSGoogle Scholar
  6. D.T. Blewett, P.G. Lucey, B.R. Hawke, Meteorit. Planet. Sci. 37, 1245–1254 (2002) ADSGoogle Scholar
  7. E.T. Bradley, G.M. Holsclaw, W.E. McClintock, N.R. Izenberg, Eos Trans. Am. Geophys. Union 87 (Jt. Assem. Suppl.) (2006), abstract P41B-01 Google Scholar
  8. A.L. Broadfoot, S. Kumar, M.J.S. Belton, M.B. McElroy, Science 185, 166–169 (1974a) CrossRefADSGoogle Scholar
  9. A.L. Broadfoot, D.E. Shemansky, S. Kumar, Geophys. Res. Lett. 3, 577–580 (1974b) ADSGoogle Scholar
  10. B.J. Butler, D.O. Muhleman, M.A. Slade, J. Geophys. Res. 98, 15003–15023 (1993) ADSGoogle Scholar
  11. M.J. Cintala, J. Geophys. Res. 97, 947–973 (1992) ADSGoogle Scholar
  12. D.L. Domingue, P.L. Koehn, R.M. Killen, A.L. Sprague, S. Menelaos, A.F. Cheng, E.T. Bradley, W.E. McClintock, Space Sci. Rev. (2007, this issue). doi: 10.1007/s11214-007-9260-9 Google Scholar
  13. D. Dzurisin, Geophys. Res. Lett. 4, 383–386 (1977) ADSGoogle Scholar
  14. L.W. Esposito et al., Space Sci. Rev. 115, 299–361 (2004) CrossRefADSGoogle Scholar
  15. J.O. Goldsten et al., Space Sci. Rev. (2007, this issue). doi: 10.1007/s11214-007-9262-7 Google Scholar
  16. S.E. Hawkins III et al., Space Sci. Rev. (2007, this issue). doi: 10.1007/s11214-007-9266-3 Google Scholar
  17. J.W. Head, C.R. Chapman, D.L. Domingue, S.E. Hawkins, W.E. McClintock, S.L. Murchie, M.S. Robinson, R.G. Strom, T.R. Watters, Space Sci. Rev. (2007, this issue). doi: 10.1007/s11214-007-9263-6 Google Scholar
  18. G. Holsclaw, T. Bradley, W.E. McClintock, N. Izenberg, R. Vaughan, M.S. Robinson, Eos Trans. Am. Geophys. Union 86 (Fall Meeting Suppl.) (2005), abstract P51A-0896, p. F1198 Google Scholar
  19. C.W. Hord et al., Space Sci. Rev. 60, 503–530 (1992) CrossRefADSGoogle Scholar
  20. D.M. Hunten, T.H. Morgan, D.E. Shemansky, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (University of Arizona Press, Tucson, 1988), pp. 562–612 Google Scholar
  21. J.F. James, R.S. Sternberg, The Design of Optical Spectrometers (Chapman and Hall, London, 1969) Google Scholar
  22. R.M. Killen, A.E. Potter, T.H. Morgan, Icarus 85, 145–167 (1990) CrossRefADSGoogle Scholar
  23. R.M. Killen, J. Benkoff, T.H. Morgan, Icarus 125, 195–211 (1997) CrossRefADSGoogle Scholar
  24. R.M. Killen, W.-H. Ip, Rev. Geophys. 37, 361–406 (1999) CrossRefADSGoogle Scholar
  25. J.C. Leary et al., Space Sci. Rev. (2007, this issue). doi: 10.1007/s11214-007-9269-0 Google Scholar
  26. P.G. Lucey, Geophys. Res. Lett. 31, L080701 (2004). doi: 10.1029/2003GL019406 CrossRefGoogle Scholar
  27. P.G. Lucey, D.T. Blewett, B.R. Hawke, J. Geophys. Res. 103, 3679–3699 (1998) CrossRefADSGoogle Scholar
  28. P.G. Lucey, D.T. Blewett, B.L. Jolliff, J. Geophys. Res. 105, 20297–20306 (2000a) CrossRefADSGoogle Scholar
  29. P.G. Lucey, D.T. Blewett, G.J. Taylor, B.R. Hawke, J. Geophys. Res. 105, 20297–20305 (2000b) CrossRefADSGoogle Scholar
  30. S.W. Maymon, S.P. Neeck, J.C. Moody Sr., Soc. Photo-Optical Instr. Eng. 924, 10–22 (1988) Google Scholar
  31. W.E. McClintock, E.T. Bradley, G.M. Holsclaw, Applied Physics Laboratory Report No. 7384-9470, 2004 Google Scholar
  32. M.A. McGrath, R.E. Johnson, L.J. Lanzerotti, Nature 323, 694–696 (1986) CrossRefADSGoogle Scholar
  33. M. Mendillo, J. Baumgardner, B. Flynn, Geophys. Res. Lett. 18, 2097–2100 (1991) ADSGoogle Scholar
  34. T.H. Morgan, R.M. Killen, Planet. Space Sci. 45, 81–94 (1996) CrossRefADSGoogle Scholar
  35. S.K. Noble, C.M. Pieters, Sol. Syst. Res. 37, 31–35 (2003) CrossRefADSGoogle Scholar
  36. A.E. Potter, T.H. Morgan, Science 229, 651–653 (1985) CrossRefADSGoogle Scholar
  37. A.E. Potter, T.H. Morgan, Icarus 67, 336–340 (1986) CrossRefADSGoogle Scholar
  38. B. Rava, B. Hapke, Icarus 71, 397–429 (1987) CrossRefADSGoogle Scholar
  39. M.S. Robinson, P.G. Lucey, Science 275, 197–200 (1997) CrossRefADSGoogle Scholar
  40. M.S. Robinson, G.J. Taylor, Meteorit. Planet. Sci. 36, 841–847 (2001) ADSCrossRefGoogle Scholar
  41. M.A. Slade, B.J. Butler, D.O. Muhleman, Science 258, 635–640 (1992) CrossRefADSGoogle Scholar
  42. A.L. Sprague, Icarus 84, 93–105 (1990) CrossRefADSGoogle Scholar
  43. A.L. Sprague, D.M. Hunten, K. Lodders, Icarus 118, 211–215 (1995) CrossRefADSGoogle Scholar
  44. A.L. Sprague, W.J. Schmitt, R.E. Hill, Icarus 135, 60–68 (1998) CrossRefADSGoogle Scholar
  45. A.L. Sprague, J.P. Emery, K.L. Donaldson, R.W. Russell, D.K. Lynch, A.L. Mazuk, Meteorit. Planet. Sci. 37, 1255–1268 (2002) ADSGoogle Scholar
  46. F. Vilas, Icarus 64, 133–138 (1985) CrossRefADSGoogle Scholar
  47. J. Warell, D.T. Blewett, Icarus 168, 257–276 (2004) CrossRefADSGoogle Scholar
  48. J. Warell, A.L. Sprague, J.P. Emery, R.W.H. Kozlowski, A. Long, Icarus 180, 281–291 (2006) CrossRefADSGoogle Scholar
  49. T.N. Woods, R.T. Wrigley III, G.J. Rottman, R.E. Haring, Appl. Optics 33, 4273–4285 (1994) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Laboratory for Atmospheric and Space PhysicsUniversity of ColoradoBoulderUSA

Personalised recommendations