Advertisement

Space Science Reviews

, Volume 131, Issue 1–4, pp 339–391 | Cite as

The MESSENGER Gamma-Ray and Neutron Spectrometer

  • John O. Goldsten
  • Edgar A. Rhodes
  • William V. Boynton
  • William C. Feldman
  • David J. Lawrence
  • Jacob I. Trombka
  • David M. Smith
  • Larry G. Evans
  • Jack White
  • Norman W. Madden
  • Peter C. Berg
  • Graham A. Murphy
  • Reid S. Gurnee
  • Kim Strohbehn
  • Bruce D. Williams
  • Edward D. Schaefer
  • Christopher A. Monaco
  • Christopher P. Cork
  • J. Del Eckels
  • Wayne O. Miller
  • Morgan T. Burks
  • Lisle B. Hagler
  • Steve J. DeTeresa
  • Monika C. Witte
Article

Abstract

A Gamma-Ray and Neutron Spectrometer (GRNS) instrument has been developed as part of the science payload for NASA’s Discovery Program mission to the planet Mercury. Mercury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) launched successfully in 2004 and will journey more than six years before entering Mercury orbit to begin a one-year investigation. The GRNS instrument forms part of the geochemistry investigation and will yield maps of the elemental composition of the planet surface. Major elements include H, O, Na, Mg, Si, Ca, Ti, Fe, K, and Th. The Gamma-Ray Spectrometer (GRS) portion detects gamma-ray emissions in the 0.1- to 10-MeV energy range and achieves an energy resolution of 3.5 keV full-width at half-maximum for 60Co (1332 keV). It is the first interplanetary use of a mechanically cooled Ge detector. Special construction techniques provide the necessary thermal isolation to maintain the sensor’s encapsulated detector at cryogenic temperatures (90 K) despite the intense thermal environment. Given the mission constraints, the GRS sensor is necessarily body-mounted to the spacecraft, but the outer housing is equipped with an anticoincidence shield to reduce the background from charged particles. The Neutron Spectrometer (NS) sensor consists of a sandwich of three scintillation detectors working in concert to measure the flux of ejected neutrons in three energy ranges from thermal to ∼7 MeV. The NS is particularly sensitive to H content and will help resolve the composition of Mercury’s polar deposits. This paper provides an overview of the Gamma-Ray and Neutron Spectrometer and describes its science and measurement objectives, the design and operation of the instrument, the ground calibration effort, and a look at some early in-flight data.

Keywords

MESSENGER Mercury Gamma-ray spectrometry X-ray spectrometry Surface composition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.J. Anderson et al., Space Sci. Rev. (2007, this issue). doi: 10.1007/s11214-007-9246-7 Google Scholar
  2. J.D. Anderson, G. Colombo, P.B. Esposito, L.E. Lau, G.B. Trager, Icarus 71, 337–349 (1987) CrossRefADSGoogle Scholar
  3. G.B. Andrews et al., Space Sci. Rev. (2007, this issue). doi: 10.1007/s11214-007-9272-5 Google Scholar
  4. M.J. Bielefeld, R.C. Reedy, A.E. Metzger, J.I. Trombka, J.A. Arnold, Proc. lunar sci. conf. 7th. Geochim. Cosmochim. Acta, Suppl. 7, 2662–2676 (1976) ADSGoogle Scholar
  5. W.V. Boynton et al., Space Sci. Rev. 110, 37–83 (2004) CrossRefADSGoogle Scholar
  6. W.V. Boynton et al., J. Geophys. Res. (2007a, in press) Google Scholar
  7. W.V. Boynton et al., Space Sci. Rev. (2007b, this issue). doi: 10.1007/s11214-007-9258-3 Google Scholar
  8. J. Brückner, J. Masarik, Planet. Space Sci. 45, 39–48 (1997) CrossRefADSGoogle Scholar
  9. J. Brückner et al., IEEE Trans. Nucl. Sci. 38, 209–217 (1991) CrossRefADSGoogle Scholar
  10. M. Burks et al., Proc. IEEE Nucl. Sci. Symposium Conference Record, vol. 1 (2004), pp. 390–394 Google Scholar
  11. B.J. Butler, J. Geophys. Res. 102, 19283–19291 (1997) CrossRefADSGoogle Scholar
  12. B.J. Butler, D.O. Muhleman, M.A. Slade, J. Geophys. Res. 98, 15003–15023 (1993) ADSGoogle Scholar
  13. R.C. Byrd, W.T. Urban, Technical Report LA-12833-MS, Los Alamos National Laboratory, Los Alamos, NM, 1994, 52 pp Google Scholar
  14. A.G. Cameron, Icarus 64, 285–294 (1985) CrossRefADSGoogle Scholar
  15. A.G.W. Cameron, W. Benz, B. Fegley Jr., W.L. Slattery, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (University of Arizona Press, Tucson, 1988), pp. 692–708 Google Scholar
  16. B.A. Campbell, D.B. Campbell, J.F. Chandler, A.A. Hine, M.C. Nolan, P.J. Perillat, Nature 426, 137–138 (2003) CrossRefADSGoogle Scholar
  17. D.B. Campbell, B.A. Campbell, L.M. Carter, J.-L. Margot, N.J.S. Stacy, Nature 443, 835–837 (2006) CrossRefADSGoogle Scholar
  18. J.F. Cavanaugh et al., Space Sci. Rev. (2007, this issue). doi: 10.1007/s11214-007-9273-4 Google Scholar
  19. D.M. Drake, W.C. Feldman, C. Hurlbut, Nucl. Instr. Meth. Phys. Res. A247, 576–582 (1986) ADSGoogle Scholar
  20. R.C. Elphic et al., J. Geophys. Res. 105, 20333–20345 (2000) CrossRefADSGoogle Scholar
  21. L.G. Evans, S.W. Squyres, J. Geophys. Res. 92, 9153–9167 (1987) ADSGoogle Scholar
  22. L.G. Evans, W.V. Boynton, R.C. Reedy, R.D. Starr, J.I. Trombka, in Proceedings of SPIE 4784, X-Ray and Gamma-Ray Detectors and Applications IV, ed. by R.B. James, L.A. Franks, A. Burger, E.M. Westbrook, R.D. Durst (SPIE, Seattle, 2002), pp. 31–44 Google Scholar
  23. L.G. Evans, R.C. Reedy, R.D. Starr, K.E. Kerry, W.V. Boynton, J. Geophys. Res. 111, E03S04 (2006). doi: 10.1029/2005JE002657 CrossRefGoogle Scholar
  24. W.C. Feldman, D.M. Drake, Nucl. Instrum. Meth. Phys. Res. A245, 182–190 (1986) ADSGoogle Scholar
  25. W.C. Feldman, G.F. Auchampaugh, R.C. Byrd, Nucl. Instrum. Meth. Phys. Res. A306, 350–365 (1991) ADSGoogle Scholar
  26. W.C. Feldman, B.L. Barraclough, B.L. Hansen, A.L. Sprague, J. Geophys. Res. 102, 25565–25574 (1997) CrossRefADSGoogle Scholar
  27. W.C. Feldman et al., Nucl. Instrum. Meth. Phys. Res. A422, 562–566 (1999) ADSGoogle Scholar
  28. W.C. Feldman et al., J. Geophys. Res. 107, 5016 (2002a). doi: 10.1029/2001JE001506 CrossRefGoogle Scholar
  29. W.C. Feldman et al., J. Geophys. Res 107, 1083 (2002b). doi: 10.1029/2001JA000295 CrossRefGoogle Scholar
  30. W.C. Feldman et al., J. Geophys. Res. 109, E07S06 (2004). doi: 10.1029/2003JE002207 CrossRefGoogle Scholar
  31. O. Gasnault et al., Geophys. Res. Lett. 28, 3797–3800 (2001) CrossRefADSGoogle Scholar
  32. K.A. Goettel, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (University of Arizona Press, Tucson, 1988), pp. 613–621 Google Scholar
  33. J.K. Harmon, Adv. Space Res. 19, 1487–1496 (1997) CrossRefADSGoogle Scholar
  34. J.K. Harmon, M.A. Slade, Science 258, 640–643 (1992) CrossRefADSGoogle Scholar
  35. J.K. Harmon, M.A. Slade, R.A. Vélez, A. Crespo, M.J. Dryer, J.M. Johnson, Nature 369, 213–215 (1994) CrossRefADSGoogle Scholar
  36. J.K. Harmon, P.J. Perillat, M.A. Slade, Icarus 149, 1–15 (2001) CrossRefADSGoogle Scholar
  37. S.E. Hawkins, III et al., Space Sci. Rev. (2007, this issue). doi: 10.1007/s11214-007-9266-3 Google Scholar
  38. A.P. Ingersoll, T. Svitek, B.C. Murray, Icarus 100, 40–47 (1992) CrossRefADSGoogle Scholar
  39. D.A. Landis, C.P. Cork, N.W. Madden, F.S. Goulding, IEEE Trans. Nucl. Sci. 29, 619–624 (1982) CrossRefGoogle Scholar
  40. D.J. Lawrence et al., J. Geophys. Res. 107, 5130 (2002). doi: 10.1029/2002JE001530 CrossRefGoogle Scholar
  41. D.J. Lawrence, R.C. Elphic, W.C. Feldman, T.H. Prettyman, O. Gasnault, S. Maurice, J. Geophys. Res. 108, 5102 (2003). doi: 1010.1029/2003JE002050 CrossRefGoogle Scholar
  42. D.J. Lawrence et al., J. Geophys. Res 111, E08001 (2006). doi: 10.1029/2005JE002637 CrossRefGoogle Scholar
  43. J.C. Leary et al., Space Sci. Rev. (2007, this issue). doi: 10.1007/s11214-007-9269-0 Google Scholar
  44. S. Maurice, D.J. Lawrence, W.C. Feldman, R.C. Elphic, O. Gasnault, J. Geophys. Res. 109, E07S04 (2004). doi: 10.1029/2003JE002208 CrossRefGoogle Scholar
  45. J.V. McAdams, Astrodynamics 2003, Adv. Astronaut. Sci. 116 (part III), 643–662 (2004) Google Scholar
  46. W.E. McClintock, M.R. Lankton, Space Sci. Rev. (2007, this issue). doi: 10.1007/s11214-007-9264-5 Google Scholar
  47. J.I. Moses, K. Rawlins, K. Zahnle, L. Dones, Icarus 137, 197–221 (1999) CrossRefADSGoogle Scholar
  48. D.A. Paige, S.E. Wood, A.R. Vasavada, Science 258, 643–646 (1992) CrossRefADSGoogle Scholar
  49. T.H. Prettyman et al., J. Geophys. Res. 111, E12007 (2006). doi: 10.1029/2005JE002656 CrossRefADSGoogle Scholar
  50. J.R. Salvail, F.P. Fanale, Icarus 111, 441–455 (1994) CrossRefADSGoogle Scholar
  51. C.E. Schlemm II et al. (2007, this issue). doi: 10.1007/s11214-007-9248-5
  52. M.A. Slade, B.J. Butler, D.O. Muhleman, Science 258, 635–640 (1992) CrossRefADSGoogle Scholar
  53. S.C. Solomon et al., Planet. Space Sci. 49, 1445–1465 (2001) CrossRefADSGoogle Scholar
  54. A.L. Sprague, D.M. Hunten, K. Lodders, Icarus 118, 211–215 (1995) CrossRefADSGoogle Scholar
  55. R.G. Strom, Mercury: The Elusive Planet (Smithsonian Institution Press, Washington, 1987), 197 pp Google Scholar
  56. A.R. Vasavada, D.A. Paige, S.E. Wood, Icarus 141, 179–193 (1999) CrossRefADSGoogle Scholar
  57. H. Wänke, T. Gold, Phil. Trans. R. Soc. Lond. 303, 287–302 (1981) CrossRefGoogle Scholar
  58. G.W. Wetherill, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (University of Arizona Press, Tucson, 1988), pp. 670–691 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • John O. Goldsten
    • 1
  • Edgar A. Rhodes
    • 1
  • William V. Boynton
    • 2
  • William C. Feldman
    • 3
  • David J. Lawrence
    • 3
  • Jacob I. Trombka
    • 4
  • David M. Smith
    • 5
  • Larry G. Evans
    • 6
  • Jack White
    • 7
  • Norman W. Madden
    • 8
  • Peter C. Berg
    • 9
  • Graham A. Murphy
    • 1
  • Reid S. Gurnee
    • 1
  • Kim Strohbehn
    • 1
  • Bruce D. Williams
    • 1
  • Edward D. Schaefer
    • 1
  • Christopher A. Monaco
    • 1
  • Christopher P. Cork
    • 8
  • J. Del Eckels
    • 8
  • Wayne O. Miller
    • 8
  • Morgan T. Burks
    • 8
  • Lisle B. Hagler
    • 8
  • Steve J. DeTeresa
    • 8
  • Monika C. Witte
    • 8
  1. 1.The Johns Hopkins University Applied Physics LaboratoryLaurelUSA
  2. 2.Lunar and Planetary LaboratoryUniversity of ArizonaTucsonUSA
  3. 3.Los Alamos National LaboratoryLos AlamosUSA
  4. 4.NASA Goddard Space Flight CenterGreenbeltUSA
  5. 5.Department of PhysicsUniversity of CaliforniaSanta CruzUSA
  6. 6.Computer Sciences Corporation, Science ProgramsLanham-SeabrookUSA
  7. 7.Scientific and Engineering Solutions, Inc.Chagrin FallsUSA
  8. 8.Lawrence Livermore National LaboratoryLivermoreUSA
  9. 9.Space Sciences LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations