Advertisement

Space Science Reviews

, Volume 131, Issue 1–4, pp 417–450 | Cite as

The Magnetometer Instrument on MESSENGER

  • Brian J. Anderson
  • Mario H. Acuña
  • David A. Lohr
  • John Scheifele
  • Asseem Raval
  • Haje Korth
  • James A. Slavin
Article

Abstract

The Magnetometer (MAG) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission is a low-noise, tri-axial, fluxgate instrument with its sensor mounted on a 3.6-m-long boom. The boom was deployed on March 8, 2005. The primary MAG science objectives are to determine the structure of Mercury’s intrinsic magnetic field and infer its origin. Mariner 10 observations indicate a planetary moment in the range 170 to 350 nT R M 3 (where R M is Mercury’s mean radius). The uncertainties in the dipole moment are associated with the Mariner 10 trajectory and variability of the measured field. By orbiting Mercury, MESSENGER will significantly improve the determination of dipole and higher-order moments. The latter are essential to understanding the thermal history of the planet. MAG has a coarse range, ±51,300 nT full scale (1.6-nT resolution), for pre-flight testing, and a fine range, ±1,530 nT full scale (0.047-nT resolution), for Mercury operation. A magnetic cleanliness program was followed to minimize variable and static spacecraft-generated fields at the sensor. Observations during and after boom deployment indicate that the fixed residual field is less than a few nT at the location of the sensor, and initial observations indicate that the variable field is below 0.05 nT at least above about 3 Hz. Analog signals from the three axes are low-pass filtered (10-Hz cutoff) and sampled simultaneously by three 20-bit analog-to-digital converters every 50 ms. To accommodate variable telemetry rates, MAG provides 11 output rates from 0.01 s−1 to 20 s−1. Continuous measurement of fluctuations is provided with a digital 1–10 Hz bandpass filter. This fluctuation level is used to trigger high-time-resolution sampling in eight-minute segments to record events of interest when continuous high-rate sampling is not possible. The MAG instrument will provide accurate characterization of the intrinsic planetary field, magnetospheric structure, and dynamics of Mercury’s solar wind interaction.

Keywords

Mercury MESSENGER Magnetometer Magnetic field Magnetosphere 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.H. Acuña, IEEE Trans. Magn. MAG-10, 519–523 (1974) CrossRefADSGoogle Scholar
  2. M.H. Acuña, Rev. Sci. Instr. 73, 3717–3736 (2002) CrossRefADSGoogle Scholar
  3. M.H. Acuña et al., J. Geophys. Res. 97, 7799–7814 (1992) ADSCrossRefGoogle Scholar
  4. M.H. Acuña, C.T. Russell, L.J. Zanetti, B.J. Anderson, J. Geophys. Res. 102, 23751–23759 (1997) CrossRefADSGoogle Scholar
  5. M.H. Acuña et al., Science, 279, 1676–1680 (1998) CrossRefADSGoogle Scholar
  6. M.H. Acuña et al., Science, 284, 790–793 (1999) CrossRefADSGoogle Scholar
  7. O. Aharonson, M.T. Zuber, S.C. Solomon, Earth Planet. Sci. Lett. 218, 261–268 (2004) CrossRefADSGoogle Scholar
  8. B.J. Anderson et al., IEEE Trans. Geosci. Rem. Sens. 39, 907–917 (2001) CrossRefADSGoogle Scholar
  9. G.B. Andrews et al., Space Sci. Rev. (2007, this issue). doi: 10.1007/s11214-007-9272-5 Google Scholar
  10. K.W. Behannon, M.H. Acuña, L.F. Burlaga, R.P. Lepping, F.M. Neubauer, Space Sci. Rev. 21, 235–257 (1977) CrossRefADSGoogle Scholar
  11. J.S. Bendat, A.G. Piersol, Random Data: Analysis and Measurement Procedures (Wiley, New York, 1986), 566 pp zbMATHGoogle Scholar
  12. C. Bertucci, C. Mazelle, M.H. Acuña, C.T. Russell, J.A. Slavin, J. Geophys. Res. 110, A01209 (2005). doi: 10.1029/2004JA010592 CrossRefGoogle Scholar
  13. L.F. Burlaga, Planet. Space Sci. 49, 1619–1627 (2001) CrossRefADSGoogle Scholar
  14. L.F. Burlaga et al., Geophys. Res. Lett. 30, 2072 (2003). doi: 10.1029/2003GL018291 CrossRefADSGoogle Scholar
  15. J.F. Cavanaugh et al., Space Sci. Rev. (2007, this issue). doi: 10.1007/s11214-007-9273-4 Google Scholar
  16. S.P. Christon, Icarus 71, 448–471 (1987) CrossRefADSGoogle Scholar
  17. J.E.P. Connerney, N.F. Ness, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (University of Arizona Press, Tucson, 1988), pp. 494–513 Google Scholar
  18. J.E.P. Connerney et al., Science 284, 794–798 (1989) CrossRefADSGoogle Scholar
  19. D.H. Crider, D.A. Brain, M.H. Acuña, D. Vignes, C. Mazelle, C. Bertucci, Space Sci. Rev. 111, 203–221 (2004) CrossRefADSGoogle Scholar
  20. K.U. Denskat, H.J. Beinroth, F.M. Neubauer, J. Geophys. Res. 54, 60–67 (1983) Google Scholar
  21. I.M. Engle, Planet. Space Sci. 45, 127–132 (1997) CrossRefADSGoogle Scholar
  22. G. Giampieri, A. Balogh, Planet. Space Sci. 49, 1637–1642 (2001) CrossRefADSGoogle Scholar
  23. G. Giampieri, A. Balogh, Planet. Space Sci. 50, 757–762 (2002) CrossRefADSGoogle Scholar
  24. K.-H. Glassmeier, in Magnetospheric Current Systems, ed. by S. Ohtani, R. Fujii, M. Hesse, R.L. Lysak, Geophysical Monograph, vol. 118 (American Geophysical Union, Washington, 2000), pp. 371–380 Google Scholar
  25. K.-H. Glassmeier, P.N. Mager, D.Yu. Klimushkin, Geophys. Res. Lett. 30, 1928 (2003). doi: 10.1029/2003GL017175 CrossRefADSGoogle Scholar
  26. R.E. Gold et al., Planet. Space Sci. 49, 1467–1479 (2001) CrossRefADSGoogle Scholar
  27. M.H. Heimpel, J.M. Aurnou, F.M. Al-Shamali, N. Gómez Pérez, Earth Planet. Sci. Lett. 236, 542–557 (2005) CrossRefADSGoogle Scholar
  28. D.J. Jackson, D.B. Beard, J. Geophys. Res. 82, 2828–2836 (1977) ADSGoogle Scholar
  29. H. Korth et al., Planet. Space Sci. 54, 733–746 (2004) CrossRefADSGoogle Scholar
  30. R.J. Leamon, C.W. Smith, N.F. Ness, Geophys. Res. Lett. 25, 2505–2508 (1998) CrossRefADSGoogle Scholar
  31. V. Lesur, A. Jackson, Geophys. J. Int. 140, 453–459 (2000) CrossRefADSGoogle Scholar
  32. D.A. Lohr et al., Space Sci. Rev. 82, 255–281 (1997) CrossRefADSGoogle Scholar
  33. J.G. Luhmann, C.T. Russell, N.A. Tsyganenko, J. Geophys. Res. 103, 9113–9119 (1998) CrossRefADSGoogle Scholar
  34. C. Mazelle et al., Space Sci. Rev. 111, 115–181 (2004) CrossRefADSGoogle Scholar
  35. R.T. Merrill, J. Geophys. Res. 86, 937–949 (1981) ADSGoogle Scholar
  36. R.T. Merrill, M.W. McElhinny, The Earth’s Magnetic Field, Its History, Origin and Planetary Perspective. International Geophysics Series, vol. 32 (Academic, London, 1983), 401 pp Google Scholar
  37. J.M.G. Merayo, P. Brauer, F. Primdahl, J.R. Petersen, O.V. Nielsen, Meas. Sci. Tech. 11, 120–132 (2000) CrossRefADSGoogle Scholar
  38. T. Mulligan et al., J. Geophys. Res. 104, 28217–28223 (1999) CrossRefADSGoogle Scholar
  39. T. Mulligan, C.T. Russell, B.J. Anderson, M.H. Acuña, Geophys. Res. Lett. 28, 4417–4420 (2001) CrossRefADSGoogle Scholar
  40. N.F. Ness, Space Sci. Rev. 11, 459–554 (1970) CrossRefADSGoogle Scholar
  41. N.F. Ness, K.W. Behannon, R.P. Lepping, Y.C. Whang, K.H. Schatten, Science 185, 151–160 (1974) CrossRefADSGoogle Scholar
  42. N.F. Ness, K.W. Behannon, R.P. Lepping, Y.C. Whang, J. Geophys. Res. 80, 2708–2716 (1975) ADSGoogle Scholar
  43. N.F. Ness, K.W. Behannon, R.P. Lepping, Y.C. Whang, Icarus 28, 479–488 (1976) CrossRefADSGoogle Scholar
  44. F.M. Neubauer, M.H. Acuña, L.F. Burlaga, B. Franke, B. Gramkow, J. Phys. E 20, 714–720 (1987) CrossRefADSGoogle Scholar
  45. K.W. Ogilvie et al., Science 185, 145–151 (1975) CrossRefADSGoogle Scholar
  46. T.A. Potemra, L.J. Zanetti, M.H. Acuña, IEEE Trans. Geosci. Remote Sens. GE-23, 246–249 (1985) CrossRefADSGoogle Scholar
  47. A.E. Potter, T.H. Morgan, Science 248, 835–838 (1990) CrossRefADSGoogle Scholar
  48. S.K. Runcorn, Nature 253, 701–703 (1975a) CrossRefADSGoogle Scholar
  49. S.K. Runcorn, Phys. Earth Planet. Inter. 10, 327–335 (1975b) CrossRefADSGoogle Scholar
  50. C.T. Russell, D.N. Baker, J.A. Slavin, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (University of Arizona Press, Tucson, 1988), pp. 494–513 Google Scholar
  51. D.M. Rust et al., Astrophys. J. 621, 524–536 (2005) CrossRefADSGoogle Scholar
  52. A.G. Santo et al., Planet. Space Sci. 49, 1481–1500 (2001) CrossRefADSGoogle Scholar
  53. G. Siscoe, L. Christopher, Geophys. Res. Lett. 2, 158–160 (1975) ADSGoogle Scholar
  54. J.A. Slavin, Adv. Space Res. 33, 1587–1874 (2004) CrossRefADSGoogle Scholar
  55. J.A. Slavin, R.E. Holzer, J. Geophys. Res. 84, 2076–2082 (1979) ADSGoogle Scholar
  56. J.A. Slavin, J.C.J. Owen, J.E.P. Connerney, S.P. Christon, Planet. Space Sci. 45, 133–141 (1997) CrossRefADSGoogle Scholar
  57. C.W. Smith, M.H. Acuña, L.F. Burlaga, J. L’Heureux, Space Sci. Rev. 86, 613–632 (1998) CrossRefADSGoogle Scholar
  58. S.C. Solomon, Icarus 28, 509–521 (1976) CrossRefADSGoogle Scholar
  59. S.C. Solomon et al., Planet. Space Sci. 49, 1445–1465 (2001) CrossRefADSGoogle Scholar
  60. L.J. Srnka, Phys. Earth Planet. Inter. 11, 184–190 (1976) CrossRefADSGoogle Scholar
  61. S. Stanley, H. Bloxham, W.E. Hutchison, M.T. Zuber, Earth Planet. Sci. Lett. 234, 27–38 (2005) CrossRefADSGoogle Scholar
  62. A. Stephenson, Earth Planet. Sci. Lett. 28, 454–458 (1976) CrossRefADSGoogle Scholar
  63. D.J. Stevenson, Rep. Prog. Phys. 46, 555–620 (1983) CrossRefADSGoogle Scholar
  64. D.J. Stevenson, Earth Planet. Sci. Lett. 82, 114–120 (1987) CrossRefADSGoogle Scholar
  65. D.J. Stevenson, T. Spohn, G. Schubert, Icarus 54, 466–489 (1983) CrossRefADSGoogle Scholar
  66. B.T. Tsurutani et al., J. Geophys. Res. 106, 30223–30238 (2001) CrossRefADSGoogle Scholar
  67. P.D. Welch, IBM J. Res. Dev. 5, 141–156 (1961) zbMATHCrossRefGoogle Scholar
  68. Y.C. Whang, J. Geophys. Res. 82, 1024–1030 (1977) ADSCrossRefGoogle Scholar
  69. J.D. Winningham et al., J. Geophys. Res. 98, 10649–10666 (1993) ADSGoogle Scholar
  70. L.J. Zanetti et al., Space Sci. Rev. 70, 465–482 (1994) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Brian J. Anderson
    • 1
  • Mario H. Acuña
    • 2
  • David A. Lohr
    • 1
  • John Scheifele
    • 2
  • Asseem Raval
    • 1
  • Haje Korth
    • 1
  • James A. Slavin
    • 2
  1. 1.The Johns Hopkins University Applied Physics LaboratoryLaurelUSA
  2. 2.NASA Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations