Space Science Reviews

, Volume 132, Issue 2–4, pp 433–509 | Cite as

Processes that Promote and Deplete the Exosphere of Mercury

  • Rosemary Killen
  • Gabrielle Cremonese
  • Helmut Lammer
  • Stefano Orsini
  • Andrew E. Potter
  • Ann L. Sprague
  • Peter Wurz
  • Maxim L. Khodachenko
  • Herbert I. M. Lichtenegger
  • Anna Milillo
  • Alessandro Mura
Article

Abstract

It has been speculated that the composition of the exosphere is related to the composition of Mercury’s crustal materials. If this relationship is true, then inferences regarding the bulk chemistry of the planet might be made from a thorough exospheric study. The most vexing of all unsolved problems is the uncertainty in the source of each component. Historically, it has been believed that H and He come primarily from the solar wind (Goldstein, B.E., et al. in J. Geophys. Res. 86:5485–5499, 1981), Na and K come from volatilized materials partitioned between Mercury’s crust and meteoritic impactors (Hunten, D.M., et al. in Mercury, pp. 562–612, 1988; Morgan, T.H., et al. in Icarus 74:156–170, 1988; Killen, R.M., et al. in Icarus 171:1–19, 2004b). The processes that eject atoms and molecules into the exosphere of Mercury are generally considered to be thermal vaporization, photon-stimulated desorption (PSD), impact vaporization, and ion sputtering. Each of these processes has its own temporal and spatial dependence. The exosphere is strongly influenced by Mercury’s highly elliptical orbit and rapid orbital speed. As a consequence the surface undergoes large fluctuations in temperature and experiences differences of insolation with longitude. Because there is no inclination of the orbital axis, there are regions at extreme northern and southern latitudes that are never exposed to direct sunlight. These cold regions may serve as traps for exospheric constituents or for material that is brought in by exogenic sources such as comets, interplanetary dust, or solar wind, etc. The source rates are dependent not only on temperature and composition of the surface, but also on such factors as porosity, mineralogy, and space weathering. They are not independent of each other. For instance, ion impact may create crystal defects which enhance diffusion of atoms through the grain, and in turn enhance the efficiency of PSD. The impact flux and the size distribution of impactors affects regolith turnover rates (gardening) and the depth dependence of vaporization rates. Gardening serves both as a sink for material and as a source for fresh material. This is extremely important in bounding the rates of the other processes. Space weathering effects, such as the creation of needle-like structures in the regolith, will limit the ejection of atoms by such processes as PSD and ion-sputtering. Therefore, the use of laboratory rates in estimates of exospheric source rates can be helpful but also are often inaccurate if not modified appropriately. Porosity effects may reduce yields by a factor of three (Cassidy, T.A., and Johnson, R.E. in Icarus 176:499–507, 2005). The loss of all atomic species from Mercury’s exosphere other than H and He must be by non-thermal escape. The relative rates of photo-ionization, loss of photo-ions to the solar wind, entrainment of ions in the magnetosphere and direct impact of photo-ions to the surface are an area of active research. These source and loss processes will be discussed in this chapter.

Keywords

Mercury Exosphere Surface composition Particle release processes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.R. Aellig, A.J. Lazarus, J.T. Steinberg, in Solar and Galactic Composition, ed. by R.F. Wimmer-Schweingruber (2001) Google Scholar
  2. M.A. A’Hearn, M.J.S. Belton, W.A. Delamere, J. Kissel, The Deep Impact Team, Science 310, 258–264 (2005) ADSGoogle Scholar
  3. T.J. Ahrens, D.M. Cole, Proc. Lunar Sci. Conf. 5th, (1974), pp. 2333–2345 Google Scholar
  4. T.J. Ahrens, J.D. O’Keefe, Moon 4, 214–249 (1972) ADSGoogle Scholar
  5. F. Aumayr, H. Winter, Phil. Trans. Roy. Soc. Lond. A 362, 77–102 (2004) ADSGoogle Scholar
  6. C. Barbieri, S. Verani, G. Cremonese, A. Sprague, M. Mendillo, R. Cosentino, D. Hunten, Planet. Space Sci. 52, 1169–1175 (2004) ADSGoogle Scholar
  7. A. Benninghoven, F.G. Rüdenauer, H.W. Werner, Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends (Wiley, New York, 1987), 1227 pp Google Scholar
  8. G. Betz, W. Husinsky, Phil. Trans. Roy. Soc. Lond. A 362, 177–194 (2004) ADSGoogle Scholar
  9. T.A. Bida, R.M. Killen, T.H. Morgan, Nature 404, 159–161 (2000) ADSGoogle Scholar
  10. D.T. Blewett, P.G. Lucey, B.R. Hawke, G.G. Ling, M.S. Robinson, Icarus 129, 217–231 (1997) ADSGoogle Scholar
  11. V. Bothmer, R. Schwenn, Ann. Geophys. 16, 1–24 (1998) ADSGoogle Scholar
  12. W.F. Bottke, A. Morbidelli, R. Jedicke, J.M. Petit, P. Levison, H.F. Michel, T.S. Metcalfe, Icarus 156, 399–433 (2002) ADSGoogle Scholar
  13. A.L. Broadfoot, D.E. Shemansky, S. Kumar, Geophys. Res. Lett. 3, 577–580 (1976) ADSGoogle Scholar
  14. M.E. Brown, Icarus 151, 190–195 (2001) ADSGoogle Scholar
  15. P. Brown, R.E. Spalding, D.O. ReVelle, E. Tagliaferri, S.P. Worden, Nature 420, 294–296 (2002) ADSGoogle Scholar
  16. T.H. Burbine, T.J. McCoy, L.R. Nittler, G.K. Benedix, E.A. Cloutis, T.L. Dickinson, Science 37, 1233–1244 (2002) Google Scholar
  17. B. Butler, D. Muhleman, M. Slade, J. Geophys. Res. 98, 15,003–15,023 (1993) ADSGoogle Scholar
  18. M. Bruno, G. Cremonese, S. Marchi, Mon. Not. Roy. Astron. Soc. 1, 1067–1071 (2006) ADSGoogle Scholar
  19. T.A. Cassidy, R.E. Johnson, Icarus 176, 499–507 (2005) ADSGoogle Scholar
  20. J.W. Chamberlain, Planet. Space Sci. 11, 901–960 (1963) ADSGoogle Scholar
  21. A. Ciaravella, J.C. Raymond, A. van Ballegooijen, L. Strachan, A. Vourlidas, J. Li, J. Chen, A. Panasyuk, Astrophys. J. 597, 1118–1134 (2003) ADSGoogle Scholar
  22. M. Cintala, J. Geophys. Res. 97, 947–973 (1992) ADSGoogle Scholar
  23. E.W. Cliver, O.C. St. Cyr, R.A. Howard, P.S. Mc Intosh, in Solar Coronal Structures, ed. by V. Rusin, J. Heinzel, C. Vial (VEDA Publishing House of the Slovak Academy of Sciences, 1994), pp. 83–89 Google Scholar
  24. C.M.S. Cohen, E.C. Stone, R.A. Mewaldt, R.A. Leske, G.M. Cummings, A.C. Mason, M.I. Desai, T.T. von Rosenvinge, M.E. Wiedenbeck, J. Geophys. Res. 110, A09S16 (2005) Google Scholar
  25. M.R. Combi, M.A. Disanti, U. Fink, Icarus 130, 336–354 (1997) ADSGoogle Scholar
  26. J.E.P. Connerney, N.F. Ness, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (University of Arizona Press, Tucson, 1988), pp. 494–513 Google Scholar
  27. S.R. Coon, W.F. Calaway, M.J. Pellin, J.M. White, Surf. Sci. 298, 161–172 (1993) ADSGoogle Scholar
  28. J. Crank, The Mathematics of Diffusion, 2nd edn. (Oxford Univ. Press, Oxford, 1975) Google Scholar
  29. G. Cremonese, H. Boehnhardt, J. Crovisier, H. Rauer, A. Fitzsimmons, M. Fulle, J. Licandro, D. Pollacco, G.P. Tozzi, R.M. West, Astrophys. J. Lett. 490, L199–L202 (1997) ADSGoogle Scholar
  30. G. Cremonese, M. Bruno, V. Mangano, S. Marchi, A. Milillo, Icarus 177, 122–128 (2005) ADSGoogle Scholar
  31. G. Cremonese, M. Bruno, V. Mangano, S. Marchi, A. Milillo, Icarus 182, 297–298 (2006) ADSGoogle Scholar
  32. D.C. Delcourt, T.E. Moore, S. Orsini, A. Millilo, J.A. Sauvaud, Geophys. Res. Lett. 29 (2002).  doi:10.1029/2001GL013829
  33. D.C. Delcourt, S. Grimald, F. Leblanc, J.J. Berthelier, A. Millilo, A. Mura, S. Orsini, T.E. Moore, Ann. Geophys. 21, 1723–1736 (2003) ADSCrossRefGoogle Scholar
  34. R.C. Elphic, H.O. Funsten III, R.L. Hervig, Lunar Planet. Sci. Conf. Abst. 24, 439 (1993) ADSGoogle Scholar
  35. G. Fjeldbo, A. Kliore, D. Sweetnam, P. Esposito, B. Seidel, T. Howard, Icarus 29, 439–444 (1976) ADSGoogle Scholar
  36. B.C. Flynn, S.A. Stern, Icarus 124, 530–536 (1996) ADSGoogle Scholar
  37. W.A. Gault, H.N. Rundle, Can. J. Phys. 47, 85–98 (1969) ADSGoogle Scholar
  38. D.E. Gault, E.F. Horz, D.E. Brownlee, J.B. Hartung, Lunar. Planet Sci. Conf. 5, 260 (1974) ADSGoogle Scholar
  39. M.V. Gerasimov, B.A. Ivanov, O.I. Yakovlev, Earth Moon Planet. 80, 209–259 (1998) ADSGoogle Scholar
  40. H. Gnaser, W.O. Hofer, Appl. Phys. A 48, 261–271 (1989) ADSGoogle Scholar
  41. B.E. Goldstein, S.T. Suess, R.J. Walker, J. Geophys. Res. 86, 5485–5499 (1981) ADSGoogle Scholar
  42. N. Gopalswamy, in The Sun and the Heliosphere as an Integrated system, ed. by G. Poletto, S. Suess. ASSL Series (Kluwer, 2004), pp. 201–240 Google Scholar
  43. N. Gopalswamy, M.R. Kundu, Sol. Phys. 143, 327–343 (1993) ADSGoogle Scholar
  44. N. Gopalswamy, S. Yashiro, M.L. Kaiser, R.A. Howard, J.L. Bougeret, J. Geophys. Res. 106, 29,219–29,230 (2001a) ADSGoogle Scholar
  45. N. Gopalswamy, A. Lara, S. Yashiro, M.L. Kaiser, R.A. Howard, J. Geophys. Res. 106, 29,207–29,218 (2001b) ADSGoogle Scholar
  46. N. Gopalswamy, A. Lara, S. Yashiro, R.A. Howard, Astrophys. J. 598, L63–L66 (2003) ADSGoogle Scholar
  47. N. Gopalswamy, S. Nunes, S. Yashiro, R.A. Howard, Adv. Space Res. 34(2), 391–396 (2004). doi: 10.1016/j.asr.2003.10.054 ADSGoogle Scholar
  48. C.S. Hansen, W.F. Calaway, B.V. King, M.J. Pellin, Surf. Sci. 398, 211–220 (1998) ADSGoogle Scholar
  49. C.S. Hansen, W.F. Calaway, M.J. Pellin, B.V. King, A. Wucher, Surf. Sci. 432, 199–210 (1999) ADSGoogle Scholar
  50. B. Hapke, J. Geophys. Res. 106, 10,039–10,073 (2001) ADSGoogle Scholar
  51. R.A. Haring, A. Haring, F.W. Saris, A.A. de Vries, Appl. Phys. Lett. 41, 174–176 (1982) ADSGoogle Scholar
  52. J.K. Harmon, Adv. Space Res. 19, 1487–1496 (1997) ADSGoogle Scholar
  53. J.K. Harmon, M.A. Slade, Science 258, 640–642 (1992) ADSGoogle Scholar
  54. J.K. Harmon, P.J. Perilat, M.A. Slade, Icarus 149, 1–15 (2001) ADSGoogle Scholar
  55. G.B. Hasted, Physics of Atomic Collisions (Butterworths, London, 1964), p. 416 Google Scholar
  56. G. Heiken, D. Vaniman, B.M. French, Lunar Sourcebook: A User’s Guide to the Moon (Cambridge Univ. Press, Cambridge, 1991) Google Scholar
  57. T. Henke, J. Woch, U. Mall, S. Livi, B. Wilken, R. Schwenn, G. Gloeckler, R. von Steiger, R.J. Forsyth, A. Balogh, Geophys. Res. Lett. 25, 3465–3468 (1998) ADSGoogle Scholar
  58. E. Hildner, J.T. Gosling, R.M. MacQueen, R.H. Munro, A.I. Poland, C.L. Ross, Sol. Phys. 48, 127–135 (1976) ADSGoogle Scholar
  59. R.R. Hodges Jr., J. Geophys. Res. 79, 2881–2885 (1974) ADSGoogle Scholar
  60. W.O. Hofer, in Sputtering by Particle Bombardment, ed. by R. Behrisch, R.K. Wittmaack (1991), pp. 15–90 Google Scholar
  61. L. Holmlid, J. Phys. Chem. 102, 10,636–10,646 (1998) Google Scholar
  62. L. Holmlid, Planet. Space Sci. 54, 101–112 (2006) ADSGoogle Scholar
  63. L. Holmlid, J.O. Olsson, Surf. Sci. 67, 61–76 (1977) ADSGoogle Scholar
  64. G.P. Horedt, G. Neukum, Icarus 60, 710–717 (1984) ADSGoogle Scholar
  65. R.A. Howard, D. Michels, N.R. Sheeley, M.J. Koomen, in The Sun and the Heliosphere in Three Dimensions, ed. by R. Marsden, D. Reidel. ASSL, vol. 123 (Norwell, 1986), pp. 107–111 Google Scholar
  66. W.F. Huebner, J.J. Keady, S.P. Lyon, Astrophys. Space Phys. 195, 1–294 (1992) ADSGoogle Scholar
  67. D.M. Hunten, A.L. Sprague, Adv. Space Res. 19, 1551–1560 (1997) ADSGoogle Scholar
  68. D.M. Hunten, A.L. Sprague, Meteorit. Planet. Sci. 37, 1191–1195 (2002) ADSGoogle Scholar
  69. D.M. Hunten, L.V. Wallace, Astrophys. J. 417, 757–761 (1993) ADSGoogle Scholar
  70. D.M. Hunten, T.H. Morgan, D. Shemansky, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (Univ. of Arizona Press, Tucson, 1988), pp. 562–612 Google Scholar
  71. A.P. Ingersoll, T. Svitek, B.C. Murray, Icarus 100, 40–47 (1992) ADSGoogle Scholar
  72. W.H. Ip, Geophys. Res. Lett. 13, 423–426 (1986) ADSGoogle Scholar
  73. W.H. Ip, Icarus 71, 441–447 (1987) ADSGoogle Scholar
  74. W.H. Ip, Astrophys. J. 356, 675–681 (1990) ADSGoogle Scholar
  75. W.H. Ip, A. Kopp, J. Geophys. Res. 07 (2002). doi: 10.1029/2001JA009171
  76. R.E. Johnson, Geophys. Monogr. 130, 203–219 (2002) Google Scholar
  77. K. Kabin, T.I. Gombosi, D.L. DeZeeuw, K.G. Powell, Icarus 143, 397–406 (2000) ADSGoogle Scholar
  78. E. Kallio, P. Janhunen, Geophys. Res. Lett. 30, (2003). doi: 10.1029/2003GL017842
  79. R.M. Killen, Meteorit. Planet. Sci. 37, 1223–1231 (2002) ADSGoogle Scholar
  80. R.M. Killen, Publ. Astron. Soc. Pac. 118, 1347–1353 (2006) ADSGoogle Scholar
  81. R.M. Killen, W.H. Ip, Rev. Geophys. 37, 361–406 (1999) ADSGoogle Scholar
  82. R.M. Killen, T.H. Morgan, Icarus 101, 294–312 (1993) ADSGoogle Scholar
  83. R.M. Killen, A.E. Potter, T.H. Morgan, Icarus 85, 145–167 (1990) ADSGoogle Scholar
  84. R.M. Killen, A.E. Potter, T.H. Morgan, Science 252, 474–475 (1991) ADSGoogle Scholar
  85. R.M. Killen, A.E. Potter, A. Fitzsimmons, T.H. Morgan, Planet. Space Sci. 47, 1449–1458 (1999) ADSGoogle Scholar
  86. R.M. Killen, A.E. Potter, P. Reiff, M. Sarantos, B.V. Jackson, P. Hick, B. Giles, J. Geophys. Res. 106, 20,509–20,526 (2001) ADSGoogle Scholar
  87. R.M. Killen, A.E. Potter, M. Sarantos, P. Reiff, Mercury, 25th Meeting of the IAU, Joint Discussion 2, Sydney, Australia, 2003. Meeting abstract Google Scholar
  88. R.M. Killen, M. Sarantos, P.H. Reiff, Adv. Space Res. 33, 1899–1904 (2004a) ADSGoogle Scholar
  89. R.M. Killen, M. Sarantos, A.E. Potter, P. Reiff, Icarus 171, 1–19 (2004b) ADSGoogle Scholar
  90. R.M. Killen, T.A. Bida, T.H. Morgan, Icarus 173, 300–311 (2005) ADSGoogle Scholar
  91. P.L. Koehn, A.L. Sprague, Planet. Space Sci. (2007). doi: 10.1016/j.pss.2006.10.009 Google Scholar
  92. P.L. Koehn, T.H. Zurbuchen, K. Kabin, DPS Abstract, 35.2308, 2003 Google Scholar
  93. A. Kotarba, I. Kruk, Z. Sojka, J. Catal. 221(2), 650–652 (2004) Google Scholar
  94. G.A. Krasinsky, E.V. Pitjeva, M.V. Vasilyev, E.I. Yagudina, Icarus 158, 98–105 (2002) ADSGoogle Scholar
  95. H. Lammer, P. Wurz, M.R. Patel, R. Killen, C. Kolb, S. Massetti, S. Orsini, A. Milillo, Icarus 166, 238–247 (2003) ADSGoogle Scholar
  96. A. Lara, J.A. González-Esparza, N. Gopalswamy, Geofísica Internacional 43, 75–82 (2004) Google Scholar
  97. F. Leblanc, R.E. Johnson, Icarus 164, 261–281 (2003) ADSGoogle Scholar
  98. F. Leblanc, D. Delcourt, R.E. Johnson, J. Geophys. Res. 108, (2003a). doi: 10.1029/2003JE002151
  99. F. Leblanc, J.G. Luhmann, R.E. Johnson, M. Liu, Planet. Space Sci. 51, 339–352 (2003b) ADSGoogle Scholar
  100. F. Leblanc, C. Barbieri, G. Cremonese, S. Verani, R. Cosentino, M. Mendillo, A. Sprague, D. Hunten, Icarus 185, 395–402 (2006) ADSGoogle Scholar
  101. S.T. Lepri, T.H. Zurbuchen, L.A. Fisk, I.G. Richardson, H.V. Cane, G. Gloeckler, J. Geophys. Res. 106, 29,231–29,238 (2001) ADSGoogle Scholar
  102. G.M. Lindsay, J.G. Luhmann, C.T. Russell, J.T. Gosling, J. Geophys. Res. 104, 12515–12524 (1999) ADSGoogle Scholar
  103. K. Lodders, B. Fegley, The Planetary Scientists Companion (Oxford University Press, 1998) Google Scholar
  104. J.G. Luhmann, C.T. Russell, N.A. Tsyganenko, J. Geophys. Res. 103, 9113–9119 (1998) ADSGoogle Scholar
  105. A.V. Lukyanov, S. Barabash, R. Lundin, P. C:son Brandt, Planet. Space Sci. 49, 1677–1684 (2001) ADSGoogle Scholar
  106. T.E. Madey, B.V. Yakshinskiy, V.N. Ageev, R.E. Johnson, J. Geophys. Res. 103, 5873 (1998) ADSGoogle Scholar
  107. A. Mallama, D. Wang, R.A. Howard, Icarus 155, 253–264 (2002) ADSGoogle Scholar
  108. V. Mangano, A. Milillo, S. Orsini, A. Mura, H. Lammer, P. Wurz, EGU Abstract, EGU05-A-01247, 2005 Google Scholar
  109. V. Mangano, A. Milillo, A. Mura, S. Orsini, E. De Angelis, A.M. Di Lellis, P. Wurz, Planet. Space Sci. (2007). doi: 10.1016/j.pss.2006.10.008 MATHGoogle Scholar
  110. S. Marchi, A. Morbidelli, G. Cremonese, Astron. Astrophys. 431, 1123–1127 (2005) ADSGoogle Scholar
  111. G.M. Mason, J.E. Mazur, J.R. Dwyer, Astrophys. J. 525, L133–L136 (1999) ADSGoogle Scholar
  112. S. Massetti, S. Orsini, A. Milillo, A. Mura, E. De Angelis, H. Lammer, P. Wurz, Icarus 166, 229–237 (2003) ADSGoogle Scholar
  113. S. Massetti, S. Orsini, A. Milillo, A. Mura, Planet. Space Sci. (2007). doi: 10.1016/j.pss.2006.12.008 Google Scholar
  114. M.A. McGrath, R.E. Johnson, L.J. Lanzerotti, Nature 323, 696–696 (1986) ADSGoogle Scholar
  115. A.S. Milillo, S. Orsini, P. Wurz, D. Delcourt, E. Kallio, H. Rillen, R.M. Lammer, S. Massetti, A. Mura, S. Barabash, G. Cremonese, I.A. Daglis, E. De Angelis, A.M. Di Lellis, S. Livi, V. Mangano, K. Torka, Space Sci. Rev. 117, 397–444 (2005) ADSGoogle Scholar
  116. A. Morbidelli, B. Gladman, Meteorit. Planet. Sci. 33, 999–1016 (1998) ADSGoogle Scholar
  117. T.H. Morgan, R.M. Killen, Planet. Space Sci. 45, 81–94 (1997) ADSGoogle Scholar
  118. T.H. Morgan, H.A. Zook, A.E. Potter, Icarus 74, 156–170 (1988) ADSGoogle Scholar
  119. A. Mura, Neutral Atom Emission from Mercury Magnetosphere. AOG, Conference. Singapore, June 20–24, 2005 Google Scholar
  120. A. Mura, S. Orsini, A. Milillo, D. Delcourt, S. Massetti, E. De Angelis, Icarus 175, 305–319 (2005) ADSGoogle Scholar
  121. A. Mura, S. Orsini, A. Milillo, A.M. Di Lellis, E. De Angelis, Planet. Space Sci. 54, 144–152 (2006a) ADSGoogle Scholar
  122. A. Mura, S. Orsini, A. Milillo, D. Delcourt, A.M. Di Lellis, E. De Angelis, S. Massetti, Adv. Geosci. 3 (2006b). ISBN 981-256-983-8 Google Scholar
  123. A. Mura, D. Delcourt, S. Massetti, A. Milillo, S. Orsini, A. Di Lellis, E. De Angelis, Geophysical Research Abstracts, vol. 8, 06958, EGU General Assembly, Vienna (Austria), 2–7 April (2006c) Google Scholar
  124. A. Mura, A. Milillo, S. Orsini, S. Massetti, Planet. Space Sci. (2007). doi: 10.1016/j.pss.2006.11.028 Google Scholar
  125. N.F. Ness, K.W. Behannon, R.P. Lepping, Y.C. Wang, Nature 255, 204–205 (1975) ADSGoogle Scholar
  126. H. Oechsner, H. Schoof, E. Stumpe, Surf. Sci. 76, 343–354 (1978) ADSGoogle Scholar
  127. J.D. O’Keefe, T.J. Ahrens, Science 234, 346–349 (1986) ADSGoogle Scholar
  128. D.A. Paige, S.E. Wood, A.R. Vasavada, Science 258, 643–646 (1992) ADSGoogle Scholar
  129. A.E. Potter, Geophys. Res. Lett. 22, 3289–3292 (1995) ADSGoogle Scholar
  130. A.E. Potter, T.H. Morgan, Science 229, 651–653 (1985) ADSGoogle Scholar
  131. A.E. Potter, T.H. Morgan, Icarus 67, 336–340 (1986) ADSGoogle Scholar
  132. A.E. Potter, T.H. Morgan, Icarus 71, 472–477 (1987) ADSGoogle Scholar
  133. A.E. Potter, T.H. Morgan, Science 241, 675–680 (1988) ADSGoogle Scholar
  134. A.E. Potter, T.H. Morgan, Science 248, 835–838 (1990) ADSGoogle Scholar
  135. A.E. Potter, T.H. Morgan, Planet. Space Sci. 45, 95–100 (1997) ADSGoogle Scholar
  136. A.E. Potter, R.M. Killen, T.H. Morgan, Space Sci. 47, 1141–1148 (1999) Google Scholar
  137. A.E. Potter, C.M. Anderson, R.M. Killen, T.H. Morgan, J. Geophys. Res. Planets 107 (2002a).  doi:10.1029/2000JE0014937
  138. A.E. Potter, R.M. Killen, T.H. Morgan, Meteorit. Planet. Sci. 37, 1165–1172 (2002b) ADSGoogle Scholar
  139. A.E. Potter, R.M. Killen, M. Sarantos, Icarus 181, 1–12 (2006). doi: 10.1016/j.icarus.2005.10.026 ADSGoogle Scholar
  140. A.E. Potter, R.M. Killen, T.H. Morgan, Icarus 186(2), 571–580 (2007) ADSGoogle Scholar
  141. R.L. Rairden, L.A. Frank, J.D. Craven, J. Geophys. Res. 91(A12), 13613–13630 (1986) ADSGoogle Scholar
  142. D.V. Reames, S.W. Kahler, C.K. Ng, Astrophys. J. 491, 414–420 (1997) ADSGoogle Scholar
  143. F.J.M. Rietmeijer, Advanced Mineralogy (Springer, Berlin, 1998), pp. 22–28 Google Scholar
  144. M. Sarantos, Ion Trajectories in Mercury’s Magnetosphere, PhD thesis (Rice University, Houston, 2005) Google Scholar
  145. M. Sarantos, P.H. Reiff, T.H. Hill, R.M. Killen, A.L. Urquhart, Planet. Space Sci. 49, 1629–1635 (2001) ADSGoogle Scholar
  146. M. Sarantos, R.M. Killen, D. Kim, Planet. Space Sci. (2007). doi: 10.1016/j.pss.2006.10.011 Google Scholar
  147. H. Schleicher, G. Wiedemann, H. Wohl, T. Berkefeld, D. Soltau, Astron. Astrophys. 425, 1119–1124 (2004) ADSGoogle Scholar
  148. N. Sheeley, R.A. Howard, M.J. Koomen, D.J. Michels, Astrophys. J. 272, 349–354 (1983) ADSGoogle Scholar
  149. D.E. Shemansky, Mercury Messenger 2, 1 (1988) Google Scholar
  150. D.E. Shemansky, AIP Conf. Proc. 63, Rarefied Gas Dynamics 23rd Intl. Symposium, 2003, p. 687 Google Scholar
  151. D.E. Shemansky, T.H. Morgan, Geophys. Res. Lett. 18, 1659–1662 (1991) ADSGoogle Scholar
  152. E.M. Sieveka, R.E. Johnson, Astrophys. J. 287, 418–426 (1984) ADSGoogle Scholar
  153. P. Sigmund, Phys. Rev. 184, 383–416 (1969) ADSGoogle Scholar
  154. G. Siscoe, L. Christopher, Geophys. Res. Lett. 2, 158–160 (1975) ADSGoogle Scholar
  155. M. Slade, B. Butler, D. Muhleman, Science 258, 635–640 (1992) ADSGoogle Scholar
  156. G.R. Smith, D.E. Shemansky, A.L. Broadfoot, L. Wallace, J. Geophys. Res. 83, 3783–3790 (1978) ADSGoogle Scholar
  157. W.H. Smyth, M.L. Marconi, Astrophys. J. 441, 839–864 (1995) ADSGoogle Scholar
  158. A.L. Sprague, J. Geophys. Res. 97, 18257–18264 (1992) ADSCrossRefGoogle Scholar
  159. A.L. Sprague, T.L. Roush, Icarus 133, 174–183 (1998) ADSGoogle Scholar
  160. A.L. Sprague, R.W.H. Kozlowski, D.M. Hunten, Science 249, 1140–1142 (1990) ADSGoogle Scholar
  161. A.L. Sprague, R.W.H. Kozlowski, D.M. Hunten, F.A. Grosse, Icarus 104, 33–37 (1993) ADSGoogle Scholar
  162. A.L. Sprague, R.W.H. Kozlowski, F.C. Witteborn, D.P. Cruikshank, D.H. Wooden, Icarus 109, 156–167 (1994) ADSGoogle Scholar
  163. A.L. Sprague, D.M. Hunten, K. Lodders, Icarus 118, 211–215 (1995) ADSGoogle Scholar
  164. A.L. Sprague, D.M. Hunten, F.A. Grosse, Icarus 123, 345–349 (1996) ADSGoogle Scholar
  165. A.L. Sprague, R.W.H. Kozlowski, D.M. Hunten, N.M. Schneider, D.L. Domingue, W.K. Wells, W. Schmitt, U. Fink, Icarus 129, 506–527 (1997) ADSGoogle Scholar
  166. A.L. Sprague, W.J. Schmitt, R.E. Hill, Icarus 136, 60–68 (1998) ADSGoogle Scholar
  167. A.L. Sprague, J.P. Emery, K.L. Donaldson, R.W. Russell, D.K. Lynch, A.L. Mazuk, Meteorit. Planet. Sci. 37, 1255–1268 (2002) ADSCrossRefGoogle Scholar
  168. L.V. Starukhina, Proc. Lunar Planet. Sci. Conf. 31, 1301 (2000) ADSGoogle Scholar
  169. R.F. Stebbings, C.H. Smith, H. Ehrahardt, J. Geophys. Res. 69, 2349 (1964) ADSGoogle Scholar
  170. O.C. St. Cyr, R.A. Howard, N.R. Sheeley Jr., S.P. Plunkett, D.J. Michels, S.E. Paswaters, M.J. Koomen, G.M. Simnett, B.J. Thompson, J.B. Gurman, R. Schwenn, D.F. Webb, E. Hildner, P.L. Lamy, J. Geophys. Res. 105, 18169–18185 (2000) ADSGoogle Scholar
  171. J. Von Neumann, Various Techniques Used in Connection with Random Digits. National Bureau of Standard Applied Mathematics Series, vol. 12. (1951), pp. 36–38 Google Scholar
  172. A. Vourlidas, D. Buzasi, R.A. Howard, E. Esfandiari, in Solar Variability: From Core to Outer Frontiers, ed. by A. Wilson, ESA SP-506 (ESA Publication, Noordwijk, 2002), pp. 91–94 Google Scholar
  173. J. Warell, Icarus 161, 199–222 (2003) ADSGoogle Scholar
  174. J. Warell, D.T. Blewett, Icarus 168, 257–276 (2004) ADSGoogle Scholar
  175. D.F. Webb, R.A. Howard, J. Geophys. Res. 99, 4201–4220 (1994) ADSGoogle Scholar
  176. M.E. Wiedenbeck et al., AGU Fall Mtg 2005, abstract SH11B-0267 Google Scholar
  177. R.C. Wiens, D.S. Burnett, W.F. Calaway, C.S. Hansen, K.R. Kykkem, M.L. Pellin, Icarus 128, 386–397 (1997) ADSGoogle Scholar
  178. H.F. Winters, J.W. Coburn, Surf. Sci. Rep. 14(3), 161–269 (1992) ADSGoogle Scholar
  179. H.F. Winters, J.W. Coburn, T.J. Chuang, J. Vac. Sci. Technol. B 1(2), 469–480 (1983) Google Scholar
  180. A. Wucher, H. Oechsner, Nucl. Instr. Methods B18, 458–463 (1986) Google Scholar
  181. P. Wurz, in The Dynamic Sun: Challenges for Theory and Observations. ESA SP-600 (2005), pp. 5.2, 1-9 Google Scholar
  182. P. Wurz, H. Lammer, Icarus 164, 1–13 (2003) ADSGoogle Scholar
  183. P. Wurz, W. Husinsky, G. Betz, in Symposium on Surface Science, ed. by J.J. Launois, B. Mutaftschiev, M.R. Tempère (La Plagne, France, 1990), pp. 181–185 Google Scholar
  184. P. Wurz, W. Husinsky, G. Betz, Appl. Phys. A 52, 213–217 (1991) ADSGoogle Scholar
  185. P. Wurz, R.F. Wimmer-Schweingruber, K. Issautier, P. Bochsler, A.B. Galvin, F.M. Ipavich, Composition of Magnetic Cloud Plasmas During 1997 and 1998. CP-598 (American Institute Physics on Solar and Galactic Composition, 2001), pp. 145–151 Google Scholar
  186. P. Wurz, R. Wimmer-Schweingruber, P. Bochsler, A. Galvin, J.A. Paquette, F. Ipavich, in Solar Wind X (American Institute Physics, 2003), pp. 679, 685–690 Google Scholar
  187. P. Wurz, U. Rohner, J.A. Whitby, C. Kolb, H. Lammer, P. Dobnikar, J.A. Martín-Fernández, Icarus (2007). doi: 10.1016/j.icarus.2007.04.034 Google Scholar
  188. B.V. Yakshinskiy, T.E. Madey, Nature 400, 642–644 (1999) ADSGoogle Scholar
  189. B.V. Yakshinskiy, T.E. Madey, Icarus 168, 53–59 (2004) ADSGoogle Scholar
  190. S. Yashiro, N. Gopalswamy, G. Michalek, O.C. St. Cyr, S.P. Plunkett, N.B. Rich, R.A. Howard, J. Geophys. Res. 109(A7) (2004). doi: 10.1029/2003JA010282
  191. J. Zhang, K.P. Dere, R.A. Howard, M.R. Kundu, S.M. White, Astrophys. J. 559, 452–642 (2001) ADSGoogle Scholar
  192. J.F. Ziegler, J.P. Biersack, TRIM and SRIM Program Version SRIM-2003.26 (Pergamon, New York, 1985). http://www.srim.org/ Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Rosemary Killen
    • 1
  • Gabrielle Cremonese
    • 2
  • Helmut Lammer
    • 3
  • Stefano Orsini
    • 4
  • Andrew E. Potter
    • 5
  • Ann L. Sprague
    • 6
  • Peter Wurz
    • 7
  • Maxim L. Khodachenko
    • 3
  • Herbert I. M. Lichtenegger
    • 3
  • Anna Milillo
    • 4
  • Alessandro Mura
    • 4
  1. 1.Department of AstronomyUniversity of MarylandCollege ParkUSA
  2. 2.Osservatorio Astronomico-INAFPadovaItaly
  3. 3.Space Research InstituteAustrian Academy of SciencesGrazAustria
  4. 4.Istituto di Fisica dello Spazio Interplanetario-CNRRomeItaly
  5. 5.National Solar ObservatoryTucsonUSA
  6. 6.Lunar and Planetary LaboratoryUniversity of ArizonaTucsonUSA
  7. 7.Physics InstituteUniversity of BernBernSwitzerland

Personalised recommendations