Space Science Reviews

, Volume 132, Issue 2–4, pp 229–260 | Cite as

Interior Evolution of Mercury

  • Doris Breuer
  • Steven A. HauckII
  • Monika Buske
  • Martin Pauer
  • Tilman Spohn


The interior evolution of Mercury—the innermost planet in the solar system, with its exceptional high density—is poorly known. Our current knowledge of Mercury is based on observations from Mariner 10’s three flybys. That knowledge includes the important discoveries of a weak, active magnetic field and a system of lobate scarps that suggests limited radial contraction of the planet during the last 4 billion years. We review existing models of Mercury’s interior evolution and further present new 2D and 3D convection models that consider both a strongly temperature-dependent viscosity and core cooling. These studies provide a framework for understanding the basic characteristics of the planet’s internal evolution as well as the role of the amount and distribution of radiogenic heat production, mantle viscosity, and sulfur content of the core have had on the history of Mercury’s interior.

The existence of a dynamo-generated magnetic field suggests a growing inner core, as model calculations show that a thermally driven dynamo for Mercury is unlikely. Thermal evolution models suggest a range of possible upper limits for the sulfur content in the core. For large sulfur contents the model cores would be entirely fluid. The observation of limited planetary contraction (∼1–2 km)—if confirmed by future missions—may provide a lower limit for the core sulfur content. For smaller sulfur contents, the planetary contraction obtained after the end of the heavy bombardment due to inner core growth is larger than the observed value. Due to the present poor knowledge of various parameters, for example, the mantle rheology, the thermal conductivity of mantle and crust, and the amount and distribution of radiogenic heat production, it is not possible to constrain the core sulfur content nor the present state of the mantle. Therefore, it is difficult to robustly predict whether or not the mantle is conductive or in the convective regime. For instance, in the case of very inefficient planetary cooling—for example, as a consequence of a strong thermal insulation by a low conductivity crust and a stiff Newtonian mantle rheology—the predicted sulfur content can be as low as 1 wt% to match current estimates of planetary contraction, making deep mantle convection likely. Efficient cooling—for example, caused by the growth of a crust strongly in enriched in radiogenic elements—requires more than 6.5 wt% S. These latter models also predict a transition from a convective to a conductive mantle during the planet’s history. Data from future missions to Mercury will aid considerably our understanding of the evolution of its interior.


Mercury Mantle convection Thermal evolution Volcanic activity 


  1. M.H. Acuña, J.E.P. Connerney, N.F. Ness, R.P. Lin, D. Mitchell, C.W. Carlson, J. McFadden, K.A. Anderson, H. Rème, C. Mazelle, D. Vignes, P. Wasilewski, P. Cloutier, Science 284, 790–793 (1999) ADSGoogle Scholar
  2. O. Aharonson, M.T. Zuber, S.C. Solomon, Earth Planet. Sci. Lett. 218, 261–268 (2004) ADSGoogle Scholar
  3. J.D. Anderson, R.F. Jurgens, E.L. Lau, M.A. Slade, III, G. Schubert, Icarus 124, 690–697 (1996) ADSGoogle Scholar
  4. J.D. Anderson, G. Colombo, P.B. Esposito, E.L. Lau, G.B. Trager, Icarus 71, 337–349 (1987) ADSGoogle Scholar
  5. J. Baker, M. Bizzarro, N. Wittig, J. Connelly, H. Haack, Nature 436, 1127 (2005) ADSGoogle Scholar
  6. Basaltic Volcanism Study Project, Basaltic Volcanism on the Terrestrial Planets (Pergamon, New York, 1981), 1286 pp Google Scholar
  7. V. Belleguic, P. Lognonné, M.A. Wieczorek, J. Geophys. Res. 110, E11005 (2005), doi:10.1029/2005JE002437 ADSGoogle Scholar
  8. C.M. Bertka, J.R. Holloway, J. Geophys. Res. 98, 19,755–19,766 (1993) ADSGoogle Scholar
  9. A.B. Binder, M.A. Lange, J. Geophys. Res. 85, 3194–3208 (1980) ADSGoogle Scholar
  10. R. Boehler, Earth Planet. Sci. Lett. 111, 217–227 (1992) ADSGoogle Scholar
  11. R. Boehler, Phys. Earth Planet. Int. 96, 181–186 (1996) ADSGoogle Scholar
  12. S.I. Braginsky, Geomag. Aeron. 4, 698–712 (1964) Google Scholar
  13. D. Breuer, Thermo-chemical evolution of Mercury, EPSC 2006, Berlin, Germany, Sept. 18th–22th, Talk EPSC2006-A-00755, 2006 Google Scholar
  14. D. Breuer, T. Spohn, J. Geophys. Res.-Planets 108(E7), 5072 (2003). doi:10.1029/20002JE001999 ADSGoogle Scholar
  15. D. Breuer, T. Spohn, Planet. Space Sci. 54, 153–169 (2006) ADSGoogle Scholar
  16. A.G.W. Cameron, Jr. B. Fegley, W. Benz, W.L. Slattery, in Mercury, ed. by F. Vilas et al. (University of Arizona Press, Tucson, 1988), pp. 692–708 Google Scholar
  17. C. Christensen, Nature 444, 1056–1058 (2006) ADSGoogle Scholar
  18. C. Clauser, E. Huenges, Thermal Conductivity of Rocks and Minerals, Rock Physics and Phase Relations, A Handbook of Physical Constants. AGU Reference Shelf 3, 1995 Google Scholar
  19. S.M. Clifford, F.P. Fanale, Lunar Planet. Sci. XVI 144–145 (1985) ADSGoogle Scholar
  20. J.E.P. Connerney, N.F. Ness, in Mercury (Univ. of Arizona Press, Tucson, 1988), pp. 494–513 Google Scholar
  21. V. Conzelmann, Thermische Evolution des Planeten Merkur berechnet unter Anwendung verschiedener Viskositätsgesetze, Ph.D. Thesis, University Münster, 1999 Google Scholar
  22. A.C. Cook, M.S. Robinson, J. Geophys. Res. 105 9429–9443 (2000) ADSGoogle Scholar
  23. B.M. Cordell, Tectonism and the interior of Mercury, Ph.D. thesis, University of Arizona, Tucson, 1977, 124 pp Google Scholar
  24. B.M. Cordell, R.G. Strom, Phys. Earth Planet. Inter. 15 146–155 (1977) ADSGoogle Scholar
  25. A. Davaille, C. Jaupart, J. Fluid Mech. 253 141–166 (1993) ADSGoogle Scholar
  26. B. Fegley Jr., A.G.W. Cameron, Earth Planet. Sci. Lett. 82 207–222 (1987) ADSGoogle Scholar
  27. Y. Fei, C.M. Bertka, L.W. Finger, Science 275 1621–1623 (1997) Google Scholar
  28. Y. Fei, J. Li, C.M. Bertka, C.T. Prewitt, Am. Mineral. 85 1830–1833 (2000) Google Scholar
  29. P.E. Fricker, R.T. Reynolds, A.L. Summers, P.M. Cassen, Nature 259 293–294 (1976) ADSGoogle Scholar
  30. G. Giampieri, A. Balogh, Planet. Space Sci. 50 757–762 (2002) ADSGoogle Scholar
  31. R. Grard, A. Balogh, Planet. Space Sci. 49 1395–1407 (2001) ADSGoogle Scholar
  32. O. Grasset, E.M. Parmentier, J. Geophys. Res. 103 18,171–18,181 (1998) ADSGoogle Scholar
  33. L. Grossman, Geochim. Cosmochim. Acta 36, 597–619 (1972) ADSGoogle Scholar
  34. B.H. Hager, R.W. Clayton, in Mantle Convection: Plate Tectonics and Global Dynamics, ed. by W.R. Peltier (Gordon and Breach, New York, 1989), pp. 675–763 Google Scholar
  35. H. Harder, G. Schubert, Icarus 151, 118–122 (2001) ADSGoogle Scholar
  36. J.K. Harmon, Adv. Space Res., 19, 1487–1496 (1997) ADSGoogle Scholar
  37. S.A. Hauck II, A.J. Dombard, R.J. Phillips, S.C. Solomon, Earth Planet. Sci. Lett. 222, 713–728 (2004) ADSGoogle Scholar
  38. S.A. Hauck III, R.J. Phillips, J. Geophys. Res. 107, 5052 (2002). doi:5010.1029/2001JE001801 Google Scholar
  39. M.H. Heimpel, J.M. Aurnou, F.M. Al-Shamali, N. Gomez Perez, Earth Planet. Sci. Lett. 236, 542–557 (2005) ADSGoogle Scholar
  40. C.T. Herzberg, P. Raterron, J. Zhang, Geophys. Geochem. Geosyst. 1 (2000). doi:10.129/2000GC000089
  41. M.M. Hirschmann, Geophys. Geochem. Geosyst. 1 (2000). doi:10.129/2000GC000070
  42. A.M. Hofmeister, Science 283(5408), 1699 (1999) ADSGoogle Scholar
  43. R. Jeanloz, D.L. Mitchell, A.L. Sprague, I. de Pater, Science 268, 1455–1457 (1995) ADSGoogle Scholar
  44. S. Karato, D.C. Rubie, J. Geophys. Res. 102, 20111–20122 (1997) ADSGoogle Scholar
  45. S.-I. Karato, P. Wu, Science 260, 771–778 (1993) ADSGoogle Scholar
  46. H.H. Kieffer, Science 194, 1344–1346 (1976) ADSGoogle Scholar
  47. T. Kleine, C. Münker, K. Mezger, H. Palme, Nature 418, 952–955 (2002) ADSGoogle Scholar
  48. T. Kleine, K. Mezger, H. Palme, E. Scherer, C. Munker, AGU, Fall Meeting 2004, Abstract P31C-04, 2004 Google Scholar
  49. S. Labrosse, Phys. Earth Planet. Interiors 140, 127–143 (2003) ADSGoogle Scholar
  50. T. Lee, D.A. Papanastassiou, G.J. Wasserburg, Geophys. Res. Lett. 3, 109–112 (1976) ADSGoogle Scholar
  51. J.S. Lewis, Science 186, 440–443 (1972) ADSGoogle Scholar
  52. J.S. Lewis, in Mercury, ed. by F. Vilas et al. (University of Arizona Press, Tucson, 1988), pp. 651–666 Google Scholar
  53. K. Lodders, B. Fegley Jr., The Planetary Scientist’s Companion (Oxford University Press, New York, 1998), 371 pp Google Scholar
  54. J.L. Margot, S.J. Peale, R.F. Jurgens, M.A. Slade, I.V. Holin, Science 316, 710–714 (2007) ADSGoogle Scholar
  55. C.A. McCammon, A.E. Ringwood, I. Jackson, Geophys. J. Roy. Astron. Soc. 72, 577–595 (1983) Google Scholar
  56. M.K. McNutt, J. Geophys. Res. 89, 11180–11194 (1984) ADSCrossRefGoogle Scholar
  57. L.-N. Moresi, V.S. Solomatov, Phys. Fluids 7, 2154–2162 (1995) MATHADSGoogle Scholar
  58. N.F. Ness, K.W. Behannon, R.P. Lepping, Y.C. Whang, K.H. Schatten, Science 185, 151–160 (1974) ADSGoogle Scholar
  59. N.F. Ness, K.W. Behannon, R.P. Lepping, Y.C. Whang, Icarus 28, 479–488 (1976) ADSGoogle Scholar
  60. F. Nimmo, D. Stevenson, J. Geophys. Res. 105, 11969–11979 (2000) ADSGoogle Scholar
  61. F. Nimmo, T.R. Watters, Geophys. Res. Lett. 31, L02701 (2004) Google Scholar
  62. M. Pauer, O. Fleming, K. Čadek, J. Geophys. Res. 111(E11), E1100 (2006). doi:10.1029/2005JE002511 Google Scholar
  63. M. Pauer, D. Breuer, T. Spohn, Subsurface structure of Mercury—Expected results from gravity/topography analyses (2007, submitted) Google Scholar
  64. S.J. Peale, in Mercury, ed. by F. Vilas et al. (University of Arizona Press, Tucson, 1988), pp. 494–513 Google Scholar
  65. C.C. Reese, V.S. Solomatov, L.N. Moresi, J. Geophys. Res. 103, 13643–13658 (1998) ADSGoogle Scholar
  66. C.C. Reese, V.S. Solomatov, L.-N. Moresi, Icarus 139, 67–80 (1999) ADSGoogle Scholar
  67. F.M. Richter, H.C. Nataf, S.F. Daly, J. Fluid Mech. 129, 183 (1983) ADSGoogle Scholar
  68. A.E. Ringwood, Geochem. J. 11, 111–135 (1977) Google Scholar
  69. M.S. Robinson, M.E. Davies, T.R. Colvin, K.E. Edwards, J. Geophys. Res. 104, 30 (1999) Google Scholar
  70. M.S. Robinson, G.J. Taylor, Meteorit. Planet. Sci. 36, 841–847 (2001) ADSCrossRefGoogle Scholar
  71. S.K. Runcorn, Nature 253, 701–703 (1975) ADSGoogle Scholar
  72. C.T. Russel, D.N. Baker, J.A. Slavin, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (Univ. Press of Arizona, Tucson, 1988), pp. 514–561 Google Scholar
  73. G. Schubert, M.N. Ross, D.J. Stevenson, T. Spohn, in Mercury, ed. by F. Vilas et al. (Univ. Press of Arizona, Tucson, 1988), pp. 429–460 Google Scholar
  74. G. Schubert, D. Bercovici, G.A. Glatzmeier, J. Geophys. Res. 95, 14105–14129 (1990) ADSGoogle Scholar
  75. G. Schubert, S.C. Solomon, D.L. Turcotte, M.J. Drake, N.H. Sleep, in Mars, ed. by H.H. Kieffer, B.M. Jakobsky, C.W. Snyder, M.S. Matthews (University of Arizona Press, Tucson, 1992), pp. 147–183 Google Scholar
  76. G. Schubert, D.L. Turcotte, P. Olson, Mantle Convection in the Earth and Planets (Cambridge University Press, Cambridge, 2001), 956 pp Google Scholar
  77. S. Schumacher, D. Breuer, J. Geophys. Res. 111, E02006 (2006). doi:10.1029/2005JE002429 Google Scholar
  78. B.E. Schwab, A.D. Johnston, J. Petrol. 42, 1789–1811 (2001) Google Scholar
  79. U. Seipold, Phys. Earth Planet. Int. 69(3–4), 299-303 (1992) ADSGoogle Scholar
  80. H.N. Sharpe, D.W. Strangway, Geophys. Res. Lett. 3, 285–288 (1976) ADSGoogle Scholar
  81. R.W. Siegfried, S.C. Solomon, Icarus 23, 192–205 (1974) ADSGoogle Scholar
  82. D.E. Smith, M.T. Zuber, G.A. Neumann, F.G. Lemoine, J. Geophys. Res. 102, 1591–1611 (1997) ADSGoogle Scholar
  83. V.S. Solomatov, Phys. Fluids 7, 266–274 (1995) MATHADSGoogle Scholar
  84. V.S. Solomatov, L.-N. Moresi, J. Geophys. Res. 105, 21795–21817 (2000) ADSGoogle Scholar
  85. V.S. Solomatov, C.C. Reese, Mantle convection and thermal evolution of Mercury reviseted, in LPI Conference Mercury: Space Environment, Surface, and Interior, Chicago, 2001 Google Scholar
  86. S.C. Solomon, Icarus 28, 509–521 (1976) ADSGoogle Scholar
  87. S.C. Solomon, Phys. Earth Planet. Inter. 15, 135–145 (1977) ADSGoogle Scholar
  88. S.C. Solomon, Earth Planet. Sci. Lett. 19, 168–182 (1979) Google Scholar
  89. S.C. Solomon, R.L. McNutt Jr., R.E. Gold, M.H. Acuña, D.N. Baker, W.V. Boynton, C.R. Chapman, A.F. Cheng, G. Gloeckler, J.W. Head III, S.M. Krimigis, W.E. McClintock, S.L. Murchie, S.J. Peale, R.J. Phillips, M.S. Robinson, J.A. Slavin, D.E. Smith, R.G. Strom, J.I. Trombka, M.T. Zuber, Planet. Space Sci. 49, 1445–1465 (2001) ADSGoogle Scholar
  90. C.P. Sonett, D.S. Colburn, K. Schwartz, Icarus 24, 231–255 (1975) ADSGoogle Scholar
  91. T. Spohn, F. Sohl, K. Wieczerkowski, V. Conzelmann, Planet. Space Sci. 49, 1561–1570 (2001) ADSGoogle Scholar
  92. T. Spohn, Icarus 90, 222–236 (1991) ADSGoogle Scholar
  93. A.L. Sprague, R.W.H. Kozlowski, F.C. Witteborn, D.P. Cruikshank, D.H. Wooden, Icarus 109, 156–167 (1994) ADSGoogle Scholar
  94. A.L. Sprague, D.B. Nash, F.C. Witteborn, D.P. Cruikshank, Adv. Space Res. 19, 1507–1510 (1997) ADSGoogle Scholar
  95. P.D. Spudis, J.E. Guest, in Mercury, ed. by F. Vilas et al. (University of Arizona Press, Tucson, 1988), pp. 118–164 Google Scholar
  96. S. Stanley, J. Bloxham, W.E. Hutchinson, M.T. Zuber, Earth Planet. Sci. Lett. 234, 27–38 (2005) ADSGoogle Scholar
  97. D.J. Stevenson, Earth Planet. Sci. Lett. 82, 114–120 (1987) ADSGoogle Scholar
  98. D.J. Stevenson, in Origin of the Earth, ed. by H.E. Newsom, J.H. Jones (Oxford University Press, New York, 1990), pp. 231–249 Google Scholar
  99. D.J. Stevenson, T. Spohn, G. Schubert, Icarus 54, 466–489 (1983) ADSGoogle Scholar
  100. R.G. Strom, Adv. Space Res. 19, 1471–1485 (1997) ADSGoogle Scholar
  101. R.G. Strom, N.J. Trask, J.E. Guest, J. Geophys. Res. 80, 2478–2507 (1975) ADSGoogle Scholar
  102. G.J. Taylor, E.R.D. Scott, in Treatise on Geochemistry, vol. 1, Meteorites, Comets and Planets, ed. by M.A. Davis (Elsevier, Amsterdam, 2005), pp. 477–485 Google Scholar
  103. M.N. Toksöz, A.T. Hsui, D.H. Johnston, Thermal evolution of the Moon and the terrestrial planets, in The Soviet–American Conference on Cosmochemistry of the Moon and Planets, NASA SP-370, 1978, pp. 245–328 Google Scholar
  104. D.C. Tozer, Phil. Trans. Roy. Soc. 258, 252–271 (1965) ADSGoogle Scholar
  105. T.M. Usselman, Am. J. Sci. 275, 278–290 (1975) CrossRefGoogle Scholar
  106. T. VanHoolst, F. Sohl, I. Holin, O. Verhoeven, V. Dehant, T. Spohn (2007), this issue Google Scholar
  107. F. Vilas, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (University of Arizona Press, Tucson, 1988), pp. 622–650 Google Scholar
  108. T.R. Watters, M.S. Robinson, A.C. Cook, Geology 26, 991–994 (1998) ADSGoogle Scholar
  109. T.R. Watters, R.A. Schultz, M.S. Robinson, A.C. Cook, Geophys. Res. Lett. 29(11), 1542 (2002). doi:10.1029/2001GL014308 ADSGoogle Scholar
  110. T.R. Watters, M.S. Robinson, C.R. Bina, P.D. Spudis, Geophys. Res. Lett. 31, 04701 (2004) Google Scholar
  111. T.R. Watters, F. Nimmo, M.S. Robinson, Geology 33(8), 669–672 (2005). doi:10.1130/G21678.1 ADSGoogle Scholar
  112. J. Weertman, J.R. Weertman, Annu. Rev. Earth Planet. Sci. 3, 293–315 (1975) ADSGoogle Scholar
  113. S.J. Weidenschilling, Icarus 35, 99–111 (1978) ADSGoogle Scholar
  114. G.W. Wetherill, Science 228, 877–879 (1985) ADSGoogle Scholar
  115. G.W. Wetherill, in Mercury, ed. by F. Vilas et al. (University of Arizona Press, Tucson, 1988), pp. 670–691 Google Scholar
  116. J. Wicht, M. Mandea, F. Takahashi, U.R. Christensen, M. Matsushima, B. Langlais (2007), this issue Google Scholar
  117. A. Zebib, G. Schubert, J.L. Dein, R.C. Paliwal, Geophys. Astrophys. Fluid Dyn. 23, 1–42 (1983) MATHADSGoogle Scholar
  118. J. Zhang, C. Herzberg, J. Geophys. Res. 99, 17,729–17,742 (1994) ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Doris Breuer
    • 1
  • Steven A. HauckII
    • 2
  • Monika Buske
    • 3
  • Martin Pauer
    • 1
    • 4
  • Tilman Spohn
    • 1
  1. 1.Institut für PlanetenforschungDLRBerlinGermany
  2. 2.Department of Geological SciencesCase Western Reserve UniversityClevelandUSA
  3. 3.Max-Planck Institut für SonnensystemforschungLindauGermany
  4. 4.Department of GeophysicsCharles University of PraguePragueCzech Pepublic

Personalised recommendations