Space Science Reviews

, Volume 129, Issue 1–3, pp 207–243 | Cite as

A Comparative Study of the Influence of the Active Young Sun on the Early Atmospheres of Earth, Venus, and Mars

  • Yuri N. Kulikov
  • Helmut Lammer
  • Herbert I. M. Lichtenegger
  • Thomas Penz
  • Doris Breuer
  • Tilman Spohn
  • Rickard Lundin
  • Helfried K. Biernat
Article

Abstract

Because the solar radiation and particle environment plays a major role in all atmospheric processes such as ionization, dissociation, heating of the upper atmospheres, and thermal and non-thermal atmospheric loss processes, the long-time evolution of planetary atmospheres and their water inventories can only be understood within the context of the evolving Sun. We compare the effect of solar induced X-ray and EUV (XUV) heating on the upper atmospheres of Earth, Venus and Mars since the time when the Sun arrived at the Zero-Age-Main-Sequence (ZAMS) about 4.6 Gyr ago. We apply a diffusive-gravitational equilibrium and thermal balance model for studying heating of the early thermospheres by photodissociation and ionization processes, due to exothermic chemical reactions and cooling by IR-radiating molecules like CO2, NO, OH, etc. Our model simulations result in extended thermospheres for early Earth, Venus and Mars. The exospheric temperatures obtained for all the three planets during this time period lead to diffusion-limited hydrodynamic escape of atomic hydrogen and high Jeans’ escape rates for heavier species like H2, He, C, N, O, etc. The duration of this blow-off phase for atomic hydrogen depends essentially on the mixing ratios of CO2, N2 and H2O in the atmospheres and could last from ∼100 to several hundred million years. Furthermore, we study the efficiency of various non-thermal atmospheric loss processes on Venus and Mars and investigate the possible protecting effect of the early martian magnetosphere against solar wind induced ion pick up erosion. We find that the early martian magnetic field could decrease the ion-related non-thermal escape rates by a great amount. It is possible that non-magnetized early Mars could have lost its whole atmosphere due to the combined effect of its extended upper atmosphere and a dense solar wind plasma flow of the young Sun during about 200 Myr after the Sun arrived at the ZAMS. Depending on the solar wind parameters, our model simulations for early Venus show that ion pick up by strong solar wind from a non-magnetized planet could erode up to an equivalent amount of ∼250 bar of O+ ions during the first several hundred million years. This accumulated loss corresponds to an equivalent mass of ∼1 terrestrial ocean (TO (1 TO ∼1.39×1024 g or expressed as partial pressure, about 265 bar, which corresponds to ∼2900 m average depth)). Finally, we discuss and compare our findings with the results of preceding studies.

Keywords

Early atmospheres Atmospheric evolution Thermospheric heating Solar induced atmospheric loss 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.H. Acuña et al., Science 279, 1676–1680 (1998) ADSGoogle Scholar
  2. M.H. Acuña et al., Science 284, 790–793 (1999) ADSGoogle Scholar
  3. U.V. Amerstorfer, H. Lammer, T. Tokano, F. Selsis, C. Kolb, A. Bérces, G. Kovács, M.R. Patel, C.S. Cockell, Gy. Rontó, T. Penz, N.V. Erkaev, H.K. Biernat, in Proc. 3rd European Workshop on Exo/Astrobiology, ed. by R.A. Harris, L. Ouwehand. ESA SP, vol. 545 (2004), pp. 165–166 Google Scholar
  4. T.R. Ayres, J. Geophys. Res. 102, 1641–1651 (1997) ADSGoogle Scholar
  5. V.R. Baker, Nature 412, 228–236 (2001) ADSGoogle Scholar
  6. J.L. Bandfield, T.D. Gloch, P.R. Christensen, Science 301, 1084–1086 (2003) ADSGoogle Scholar
  7. S. Barabash, A. Fedorov, R. Lundin, J.-A. Sauvaud, Science 315, 501–514 (2007) ADSGoogle Scholar
  8. C.A. Barth, A.I.F. Stewart, S.W. Bougher, D.M. Hunten, S.J. Bauer, A.F. Nagy, in Mars (Univ. Arizona Press, 1992), pp. 1054–1089 Google Scholar
  9. R.H. Becker, R.N. Clayton, E.M. Galimov, H. Lammer, B. Marty, R.O. Pepin, R. Weiler, Space Sci. Rev. 106, 377–410 (2003) ADSGoogle Scholar
  10. J.-P. Biebring the OMEGA team, Science 307, 1576–1581 (2005) ADSGoogle Scholar
  11. H.K. Biernat, N.V. Erkaev, C.J. Farrugia, Adv. Space Res. 28, 833–839 (2001) ADSGoogle Scholar
  12. S.W. Bougher, G.M. Keating, Structure of the Mars Upper Atmosphere: MGS Aerobraking Data and Model Interpretation. The Fifth International Conference on Mars, July 19–24, 1999, Pasadena, California, abstract no. 6010, 1999 Google Scholar
  13. S.W. Bougher, S. Engel, R.G. Roble, B. Foster, J. Geophys. Res. 104, 16,591–16,611 (1999) ADSGoogle Scholar
  14. S.W. Bougher, S. Engel, R.G. Roble, B. Foster, J. Geophys. Res. 105, 17669–17692 (2000) ADSGoogle Scholar
  15. L.H. Brace, R.F. Theis, W.R. Hoegy, Planet. Space Sci. 30, 29–37 (1982) ADSGoogle Scholar
  16. D.A. Brain, B.M. Jakosky, J. Geophys. Res. 103, 22689–22694 (1998) ADSGoogle Scholar
  17. D. Breuer, T. Spohn, J. Geophys. Rev. 108, 5072 (2003). doi: 10.1029/2002JE001999 Google Scholar
  18. F.H. Busse, Phys. Earth Planet. 12, 350–358 (1976) ADSGoogle Scholar
  19. E. Carlsson, F. Fedorovc, S. Barabash, E. Budnik, A. Grigorieva, H. Gunell, H. Nilssona, J.-A. Sauvaud, R. Lundin, Y. Futaanaa, M. Holmström, H. Anderssona, M. Yamauchi, J.-D. Winningham, R.A. Frahmd, J.R. Sharber, J. Scherrer, A.J. Coates, D.R. Linder, D.O. Kataria, E. Kallio, H. Koskinen, T. Säles, P. Riihela, W. Schmidt, J. Kozyra, J. Luhmann, E. Roelof, D. Williams, S. Livi, C.C. Curtis, K.C. Hsiehj, B.R. Sandel, M. Grande, M. Carter, J.-J. Thocaven, S. McKenna-Lawlor, S. Orsini, R. Cerulli-Irelli, M. Maggi, P. Wurz, P. Bochsler, N. Krupp, J. Wocho, M. Fraenz, K. Asamura, C. Dierker, Icarus 182, 320–328 (2006) ADSGoogle Scholar
  20. M.H. Carr, Nature 326, 30–34 (1987) ADSGoogle Scholar
  21. J.W. Chamberlain, Planet. Space Sci. 11, 901–996 (1963) ADSGoogle Scholar
  22. S. Chandra, A.K. Sinha, J. Geophys. Res. 79, 1916–1921 (1974) ADSGoogle Scholar
  23. E. Chassefière, Icarus 124, 537–552 (1996a) ADSGoogle Scholar
  24. E. Chassefière, J. Geophys. Res. 101, 26039–26056 (1996b) ADSGoogle Scholar
  25. E. Chassefière, F. Leblanc, Planet. Space Sci. 52, 1039–1058 (2004) ADSGoogle Scholar
  26. C.F. Chyba, P.J. Thomas, L. Brookshaw, C. Sagan, Science 249, 366–373 (1990) ADSGoogle Scholar
  27. M. Cohen, L.V. Kuhi, Astrophys. J. Suppl. 41, 743–843 (1979) ADSGoogle Scholar
  28. J.E.P. Connerney, M.H. Acuña, P. Wasilewski, N.F. Ness, H. Rème, C. Mazelle, D. Vignes, R.P. Lin, D. Mitchell, P. Cloutier, Science 284, 794–798 (1999) ADSGoogle Scholar
  29. T.E. Cravens, J.U. Kozyra, A.F. Nagy, T.I. Gombosi, M. Kurtz, J. Geophys. Res. 92, 7341–7353 (1987) ADSGoogle Scholar
  30. G. Crowley, Rev. Geophys. Suppl. 29, 1143–1165 (1991) ADSGoogle Scholar
  31. M.O. Dayhoff, R. Eck, E.R. Lippincott, C. Sagan, Science 155, 556–557 (1967) ADSGoogle Scholar
  32. V. Dehant, H. Lammer, Yu.N. Kulikov, J.-M. Grießmeier, D. Breuer, O. Verhoeven, Ö. Karatekin, T. van Hoolst, O. Korablev, P. Lognonné, Space Sci. Rev. (2007, this issue). doi: 10.1007/s11214-007-9163-9 Google Scholar
  33. R.E. Dickinson, J. Atmos. Sci. 29, 1531–1556 (1972) ADSGoogle Scholar
  34. R.E. Dickinson, S.W. Bougher, J. Geophys. Res. 91, 70–80 (1986) ADSGoogle Scholar
  35. R.E. Dickinson, R.G. Roble, S.W. Bougher, Adv. Space Res. 7, (10)5–(10)15 (1987) ADSGoogle Scholar
  36. T. Donahue, J.H. Hoffman, A.J. Watson, Science 216, 630–633 (1982) ADSGoogle Scholar
  37. T.M. Donahue, J.B. Pollack, in Venus, ed. by D.M. Hunten, L. Colin, T.M. Donahue, V.I. Moroz (University of Arizona Press, Tucson, 1983), pp. 1003–1036 Google Scholar
  38. T.M. Donahue, E. Hartle, Geophys. Res. Lett. 12, 2449–2452 (1992) ADSGoogle Scholar
  39. J.D. Dorren, E.F. Guinan, in The Sun as a Variable Star, ed. by J.M. Pap, C. Frölich, H.S. Hudson, S.K. Solanki (Cambridge University Press, Cambridge, 1994), pp. 206–216 Google Scholar
  40. G. Dreibus, H. Wänke, Icarus 71, 225–240 (1987) ADSGoogle Scholar
  41. F. Forget, R.T. Pierrehumbert, Science 278, 1273–1276 (1997) ADSGoogle Scholar
  42. J.L. Fox, A. Dalgarno, J. Geophys. Res. 84, 7315–7333 (1979) ADSGoogle Scholar
  43. J.L. Fox, A. Dalgarno, J. Geophys. Res. 86, 629–639 (1981) ADSGoogle Scholar
  44. J.L. Fox, Planet. Space Sci. 36, 37–46 (1988) ADSGoogle Scholar
  45. J.L. Fox, A. Hać, J. Geophys. Res. 102, 24005–24011 (1997) ADSGoogle Scholar
  46. J.L. Fox, K.Y. Sung, J. Geophys. Res. 106, 21305–21335 (2001) ADSGoogle Scholar
  47. J.L. Fox, F.M. Bakalian, J. Geophys. Res. 106, 28785–28795 (2001) ADSGoogle Scholar
  48. J.-M. Grießmeier, U. Motschmann, A. Stadelmann, T. Penz, H. Lammer, F. Selsis, I. Ribas, E.F. Guinan, H.K. Biernat, W.W. Weiss, Astron. Astrophys. 425, 753–762 (2004) ADSGoogle Scholar
  49. J.-M. Grießmeier, A. Stadelmann, U. Motschmann, N.K. Belisheva, H. Lammer, H.K. Biernat, Astrobiology 5, 587–603 (2005) ADSGoogle Scholar
  50. G.V. Gridchin, E.A. Zhadin, A.I. Ivanovsky, V.A. Marchevsky, Geomagn. Aeron. 15, 93–100 (1975) ADSGoogle Scholar
  51. D.H. Grinspoon, J.S. Lewis, Icarus 74, 21–35 (1988) ADSGoogle Scholar
  52. S.H. Gross, J. Atmos. Sci. 29, 214–218 (1972) ADSGoogle Scholar
  53. E.F. Guinan, I. Ribas, in The Evolving Sun and Its Influence on Planetary Environments, ed. by B. Montesinos, A. Giménz, E.F. Guinan. ASP, vol. 269 (San Francisco, 2002), pp. 85–107 Google Scholar
  54. B.F. Gordiets, M.N. Markov, L.A. Shelepin, Planet. Space Sci. 26, 933–948 (1978) ADSGoogle Scholar
  55. B.F. Gordiets, Yu.N. Kulikov, M.N. Markov, M.Ya. Marov, Preprint FIAN, N 112 (1979) Google Scholar
  56. B.F. Gordiets, Yu.N. Kulikov, Kosm. Issled. 19, 249–260 (1981) ADSGoogle Scholar
  57. B.F. Gordiets, Yu.N. Kulikov, Kosm. Issled. 19, 539–550 (1981) ADSGoogle Scholar
  58. B.F. Gordiets, Yu.N. Kulikov, Trudy FIAN 130, 29–47 (1982) Google Scholar
  59. B.F. Gordiets, Yu.N. Kulikov, M.N. Markov, M.Ya. Marov, J. Geophys. Res. 87, 4504–4514 (1982) ADSGoogle Scholar
  60. B.F. Gordiets, A.I. Osipov, L.A. Shelepin, Kinetic Processes in Gases and Molecular Lasers (Nauka, Moscow, 1980), 512 pp. (English translation: Gordon and Breach, New York, 1987, 688 pp.) Google Scholar
  61. B.F. Gordiets, Yu.N. Kulikov, Adv. Space Res. 5, 113–117 (1985) ADSGoogle Scholar
  62. B.F. Gordiets, Trudy FIAN 212, 109–122 (1991) Google Scholar
  63. D.O. Gough, in The Solar Output and Its Variations, ed. by O.R. White (University of Colorado Press, Boulder, 1977), pp. 451–473 Google Scholar
  64. R.M. Haberle, D. Tyler, C.P. McKay, W.L. Davis, Icarus 109, 102–120 (1994) ADSGoogle Scholar
  65. R.M. Haberle, J. Geophys. Res. 103, 28467–28479 (1998) ADSGoogle Scholar
  66. W.B. Hanson, S. Santani, D.R. Zuccaro, J. Geophys. Res. 82, 4351–4363 (1977) ADSGoogle Scholar
  67. R.E. Hartle, J.M. Grebowsky, J. Geophys. Res. 98, 7437–7445 (1993) ADSGoogle Scholar
  68. R.E. Hartle, T.M. Donahue, J.M. Grebowsky, H.G. Mayr, J. Geophys. Res. 101, 4525–4538 (1996) ADSGoogle Scholar
  69. W.K. Hartmann et al., in Basaltic Volcanism on the Terrestrial Planets (Pergamon, Tarrytown, 1981) Google Scholar
  70. J.W. Head III, H. Hiesinger, M.A. Ivanov, M.A. Kreslavsky, S. Pratt, B.J. Thomson, Science 286, 2134–2137 (1999) ADSGoogle Scholar
  71. A.E. Hedin, H.B. Nieman, W.T. Kasprzak, A. Seiff, J. Geophys. Res. 88, 73–83 (1983) ADSGoogle Scholar
  72. A.M. Hessler, D.R. Lowe, R.L. Jones, D.K. Bird, Nature 428, 736–738 (2004) ADSGoogle Scholar
  73. J.H. Hoffman, R.R. Hodges Jr., T.M. Donahue, M.B. McElroy, J. Geophys. Res. 85, 7882–7890 (1980) ADSGoogle Scholar
  74. H.D. Holland, in The Origin and Evolution of Atmospheres and Oceans, ed. by P.J. Brancasio, A.G.W. Cameron (Wiley, New York, 1963), pp. 86–101 Google Scholar
  75. D.J. Hollenbach, S.S. Prasad, R.C. Witten, Icarus 64, 205–220 (1985) ADSGoogle Scholar
  76. D.M. Hunten, T.M. Donahue, J.C.G. Walker, J.F. Kasting, in Origin and Evolution of Planetary and Satellite Atmospheres, ed. by S.K. Atreya, J.B. Pollack, M.S. Matthews (University of Arizona Press, Tucson, 1987), pp. 386–423 Google Scholar
  77. D.M. Hunten, Science 259, 915–920 (1993) ADSGoogle Scholar
  78. K.S. Hutchins, B.M. Jakosky, J.G. Luhmann, J. Geophys. Res. 102, 9183–9189 (1997) ADSGoogle Scholar
  79. W.-H. Ip, Icarus 76, 135–145 (1988) ADSGoogle Scholar
  80. I. Iben Jr., Astrophys. J. 141, 993–1018 (1965) ADSGoogle Scholar
  81. M.N. Izakov, Space Sci. Rev. 12, 261–298 (1971) ADSGoogle Scholar
  82. L.G. Jacchia, Thermospheric temperature, density and composition: New models. Spec. Rep., 375, Smithson. Inst. Astrophys. Obs., Cambridge, 1977 Google Scholar
  83. B.M. Jakosky, R.O. Pepin, R.E. Johnson, J.L. Fox, Icarus 111, 271–288 (1994) ADSGoogle Scholar
  84. J.H. Jeans, The Dynamical Theory of Gases, 4th edn. (Cambridge University Press, Cambridge, 1925) MATHGoogle Scholar
  85. R.E. Johnson, M. Liu, J. Geophys. Res. 101, 3649–3647 (1996) Google Scholar
  86. N.M. Johnson, B. Fegley, Icarus 146, 301–306 (2000) ADSGoogle Scholar
  87. R.E. Johnson, D. Schnellenberger, M.C. Wong, J. Geophys. Res. 105, 1659–1670 (2000) ADSGoogle Scholar
  88. E. Kallio, J.G. Luhmann, S. Barabash, J. Geophys. Res. 102, 22183–22197 (1997) ADSGoogle Scholar
  89. E. Kallio, P. Janhunen, Annales Geophysicae 21, 2133–2145 (2003) ADSCrossRefGoogle Scholar
  90. D.M. Kass, Y.L. Yung, Science 268, 697–699 (1995) ADSGoogle Scholar
  91. D.M. Kass, Y.L. Yung, Science 274, 1932–1933 (1996) ADSGoogle Scholar
  92. J.F. Kasting, J.B. Pollack, Icarus 53, 479–508 (1983) ADSGoogle Scholar
  93. J.F. Kasting, J.B. Pollack, T.P. Ackerman, Icarus 57, 335–355 (1984) ADSGoogle Scholar
  94. J.F. Kasting, Icarus 74, 472–494 (1988) ADSGoogle Scholar
  95. J.F. Kasting, Icarus 94, 1–13 (1991) ADSGoogle Scholar
  96. G.M. Keating, R.H. Tolson, T.J. Schellenberg, N.C. Hsu, S.W. Bougher, Study of Venus upper atmosphere using Magellan drag measurements. Second Ann. Progress Rep., NAG5-6081, NASA, Washington DC, 1998 Google Scholar
  97. J. Kim, A.F. Nagy, J.L. Fox, T. Craven, J. Geophys. Res. 103, 29,339–29,342 (1998) ADSGoogle Scholar
  98. Yu.N. Kulikov, H. Lammer, H.I.M. Lichtenegger, N. Terada, I. Ribas, C. Kolb, D. Langmayr, R. Lundin, E.F. Guinan, S. Barabash, H.K. Biernat, Planet. Space Sci. 54, 1425–1444 (2006) ADSGoogle Scholar
  99. H. Lammer, S.J. Bauer, J. Geophys. Res. 96, 1819–1825 (1991) ADSGoogle Scholar
  100. H. Lammer, W. Stumptner, G.-J. Molina-Cuberos, S.J. Bauer, T. Owen, Planet. Space Sci. 48, 529–543 (2000a) ADSGoogle Scholar
  101. H. Lammer, W. Stumptner, S.J. Bauer, Planet. Space Sci. 48, 1473–1478 (2000b) ADSGoogle Scholar
  102. H. Lammer, S.J. Bauer, Space Sci. Rev. 106, 281–292 (2003) ADSGoogle Scholar
  103. H. Lammer, H.I.M. Lichtenegger, C. Kolb, I. Ribas, E.F. Guinan, R. Abart, S.J. Bauer, Icarus 106, 9–25 (2003a) ADSGoogle Scholar
  104. H. Lammer, C. Kolb, T. Penz, U.V. Amerstorfer, H.K. Biernat, B. Bodiselitsch, Int. J. Astrobiol. 2, 1–8 (2003b) Google Scholar
  105. H. Lammer, H.I.M. Lichtenegger, H.K. Biernat, N.V. Erkaev, I.L. Arshukova, C. Kolb, H. Gunell, A. Lukyanov, M. Holmstrom, S. Barabash, T.L. Zhang, W. Baumjohann, Planet. Space Sci. 54, 1445–1456 (2006) ADSGoogle Scholar
  106. F. Leblanc, R.E. Johnson, Planet. Space Sci. 49, 645–656 (2001) ADSGoogle Scholar
  107. F. Leblanc, R.E. Johnson, J. Geophys. Res. 107, 1–6 (2002) Google Scholar
  108. J.S. Lewis, Earth Planet. Sci. Lett. 10, 73–80 (1970) ADSGoogle Scholar
  109. J.S. Lewis, Icarus 16, 241–252 (1972) ADSGoogle Scholar
  110. J.S. Lewis, Space Sci. Rev. 14, 401–410 (1973) ADSGoogle Scholar
  111. J.S. Lewis, Science 186, 440–443 (1974) ADSGoogle Scholar
  112. J.S. Lewis, R.G. Prinn, Planets and Their Atmospheres: Origin and Evolution (Academic, New York, 1984) Google Scholar
  113. H.I.M. Lichtenegger, E.M. Dubinin, Earth Planets Space 50, 445–452 (1998) ADSGoogle Scholar
  114. H.I.M. Lichtenegger, H. Lammer, W. Stumptner, J. Geophys. Res. 107, 1279 (2002). doi: 10.1029/2001JA000322 Google Scholar
  115. J.G. Luhmann, J.U. Kozyra, J. Geophys. Res. 96, 5457–5467 (1991) ADSGoogle Scholar
  116. J.G. Luhmann, R.E. Johnson, M.G.H. Zhang, Geophys. Res. Lett. 19, 2151–2154 (1992) ADSGoogle Scholar
  117. J.G. Luhmann, J. Geophys. Res. 98, 17615–17621 (1993) ADSGoogle Scholar
  118. J.G. Luhmann, J. Geophys. Res. 102, 1637 (1997) ADSGoogle Scholar
  119. R. Lundin, A. Zakharov, R. Pellinen, B. Hultquist, H. Borg, E.M. Dubinin, S. Barabash, N. Pissarenko, H. Koskinnen, I. Liede, Nature 341, 609–612 (1989) ADSGoogle Scholar
  120. R. Lundin, A. Zakharov, R. Pellinen, S.W. Barabash, H. Borg, E.M. Dubinin, B. Hultquist, H. Koskinen, I. Liede, N. Pissarenko, Geophys. Res. Lett. 17, 873–876 (1990) ADSGoogle Scholar
  121. R. Lundin, E.M. Dubinin, H. Koskinen, O. Norberg, N. Pissarenko, S.W. Barabash, Geophys. Res. Lett. 18, 1059–1062 (1991) ADSGoogle Scholar
  122. R. Lundin et al., Science 305, 1933–1936 (2004) ADSGoogle Scholar
  123. R. Lundin, H. Lammer, I. Ribas, Space Sci. Rev. (2007, this issue). doi: 10.1007/s11214-007-9176-4 Google Scholar
  124. J.A. Magalhaes, J.T. Schofield, A. Seiff, J. Geophys. Res. 104, 8943–8955 (1999) ADSGoogle Scholar
  125. C.V. Manning, C.P. McKay, K.J. Zahnle, Icarus 180, 38–59 (2006) ADSGoogle Scholar
  126. P. McKay, C.R. Stocker, Rev. Geophys. 27, 189–214 (1989) ADSGoogle Scholar
  127. M.T. Mellon, Icarus 124, 268–279 (1996) ADSGoogle Scholar
  128. H.J. Melosh, A. Vickery, Nature 338, 487–489 (1989) ADSGoogle Scholar
  129. M.B. McElroy, M.J. Prather, J.M. Rodriguez, Science 215, 1614–1615 (1982) ADSGoogle Scholar
  130. A. Morbidelli, J. Chambers, J.I. Lunine, J.M. Petit, F. Robert, G.B. Valsecchi, K. Cyr, Meteorit. Planet. Sci. 35, 1309–1320 (2000) ADSCrossRefGoogle Scholar
  131. V.I. Moroz, N.A. Parfentev, N.F. Sanko, Kosm. Issled. 17, 727–742 (1979) ADSGoogle Scholar
  132. A.F. Nagy, T.E. Cravens, J.H. Yee, A.I.F. Stewart, Geophys. Res. Lett. 8, 629–632 (1981) ADSGoogle Scholar
  133. A.F. Nagy, J. Kim, T.E. Cravens, Ann. Geophys. 8, 251–256 (1990) ADSGoogle Scholar
  134. H.B. Nieman, R.E. Hartle, W.T. Kasprzak, N.W. Spencer, D.M. Hunten, G.R. Carignan, Science 203, 770–772 (1979a) ADSGoogle Scholar
  135. H.B. Nieman, R.E. Hartle, A.E. Hedin, W.T. Kasprzak, N.W. Spencer, D.M. Hunten, G.R. Carignan, Science 205, 54–56 (1979b) ADSGoogle Scholar
  136. H.B. Niemann, W.T. Kasprzak, A.E. Hedin, D.M. Hunten, W. Spencer, J. Geophys. Res. 85, 7817–7827 (1980) ADSGoogle Scholar
  137. A.O. Nier, M.B. McElroy, J. Geophys. Res. 82, 4341–4349 (1977) ADSGoogle Scholar
  138. G. Newkirk Jr., Geochim. Cosmochim. Acta Suppl. 13, 293–301 (1980) Google Scholar
  139. M. Ozima, K. Seki, N. Terada, Y.N. Miura, F.A. Podosek, H. Shinagawa, Nature 436, 655–659 (2005) ADSGoogle Scholar
  140. E.J. Öpik, Geophys. J. Roy. Astron. Soc. 7, 490–526 (1963) Google Scholar
  141. T. Penz, N.V. Erkaev, H.K. Biernat, H. Lammer, U.V. Amerstorfer, H. Gunell, E. Kallio, S. Barabash, S. Orsini, A. Milillo, W. Baumjohann, Planet. Space Sci. 52, 1157–1167 (2004) ADSGoogle Scholar
  142. R.O. Pepin, Icarus 111, 289–304 (1994) ADSGoogle Scholar
  143. J.B. Pollack, Icarus 14, 295–306 (1971) ADSGoogle Scholar
  144. S.I. Rasool, C. De Bergh, Nature 226, 1037–1039 (1970) ADSGoogle Scholar
  145. R. Raye, O. Kuo, H.D. Holland, Nature 378, 603–605 (1995) ADSGoogle Scholar
  146. S.N. Raymond, T. Quinn, J.I. Lunine, Icarus 168, 1–17 (2004) ADSGoogle Scholar
  147. I. Ribas, E.F. Guinan, M. Güdel, M. Audard, Astrophys. J. 622, 680–694 (2005) ADSGoogle Scholar
  148. P.G. Richards, D.G. Torr, J. Geophys. Res. 93, 4060–4066 (1988) ADSGoogle Scholar
  149. J.M. Rodriguez, M.J. Prather, M.B. McElroy, Planet. Space Sci. 32, 1235–1255 (1984) ADSGoogle Scholar
  150. J. Rosenqvist, E. Chassefière, Planet. Space Sci. 43, 3–10 (1995) ADSGoogle Scholar
  151. C.T. Russell, J.G. Luhmann, R.C. Elphic, F.L. Scarf, L.H. Brace, Geophys. Res. Lett. 9, 45–48 (1982) ADSGoogle Scholar
  152. J.T. Schofield et al., Science 278, 1752–1758 (1997) ADSGoogle Scholar
  153. G. Schubert, T. Spohn, J. Geophys. Res. 95, 14095–14104 (1990) ADSGoogle Scholar
  154. G. Schubert, C.T. Russell, W.B. Moore, Nature 408, 666–667 (2000) ADSGoogle Scholar
  155. Y. Shimazu, T. Urabe, Icarus 9, 498–506 (1968) ADSGoogle Scholar
  156. H. Shinagawa, T.E. Cravens, A.F. Nagy, J. Geophys. Res. 92, 7317–7330 (1987) ADSGoogle Scholar
  157. R.W. Shunk, A.F. Nagy, Ionospheres – Physics, Plasma Physics, and Chemistry (Cambridge University Press, Cambridge, 2000) Google Scholar
  158. J.A. Slavin, R.E. Holzer, J. Geophys. Res. 84, 2076–2082 (1979) ADSGoogle Scholar
  159. N.H. Sleep, J. Geophys. Res. 99, 5639–5655 (1994) ADSGoogle Scholar
  160. J.R. Spreiter, NASA Spec. Publ. SP-397, 135–149 (1975) ADSGoogle Scholar
  161. J.R. Spreiter, S.S. Stahara, J. Geophys. Res. 98, 17,251–17,262 (1980) Google Scholar
  162. S.W. Squyres, J.F. Kasting, Science 265, 744–748 (1994) ADSGoogle Scholar
  163. D.J. Stevenson, T. Spohn, G. Schubert, Icarus 54, 466–489 (1983) ADSGoogle Scholar
  164. C.P. Sonnett, M.S. Giampapa, M.S. Matthews, The Sun in Time (University of Arizona Press, Tucson, 1991) Google Scholar
  165. N. Terada, S. Machida, H. Shinagawa, J. Geophys. Res. 107, 1471–1490 (2002). doi: 10.1029/2001JA009224 Google Scholar
  166. F. Tian, O.B. Toon, A.A. Pavlov, H. De Sterck, Science 308, 1014–1017 (2005) ADSGoogle Scholar
  167. F. Tian, O.B. Toon, A.A. Pavlov, Science 311, 38b (2006) Google Scholar
  168. D.G. Torr, M.R. Torr, J. Atmos. Terr. Phys. 41, 799–839 (1979) ADSGoogle Scholar
  169. M.R. Torr, P.G. Richards, D.G. Torr, J. Geophys. Res. 85, 6819–6826 (1980) ADSGoogle Scholar
  170. A. Vidal-Madjar, A. Lecavelier des Etangs, J.-M. Désert, G.E. Ballester, R. Ferlet, G. Hébrard, M. Mayor, Nature 422, 143–146 (2003) ADSGoogle Scholar
  171. U. Von Zahn, K.H. Fricke, D.M. Hunten, D. Krankowsky, K. Mauersberger, A.O. Nier, J. Geophys. Res. 85, 7829–7840 (1980) ADSGoogle Scholar
  172. J.C.G. Walker, J. Atmos. Sci. 32, 1248–1256 (1975) ADSGoogle Scholar
  173. H. Wänke, G. Dreibus, Philos. Trans. Roy. Soc. London Ser. A. 349, 285–293 (1994) ADSGoogle Scholar
  174. B.P. Weiss, H. Vali, F.J. Baudenbacher, J.L. Kirschvink, S.T. Stewart, D.L. Shuster, Earth Planet. Sci. Lett. 201, 449–463 (2002) ADSGoogle Scholar
  175. G.W. Wetherill, Icarus 46, 70–80 (1981) ADSGoogle Scholar
  176. B.E. Wood, H.-R. Müller, G. Zank, J.L. Linsky, Astrophys. J. 574, 412–425 (2002) ADSGoogle Scholar
  177. B.E. Wood, H.-R. Müller, G.P. Zank, J.L. Linsky, S. Redfield, Astrophys. J. 628, L143–L146 (2005) ADSGoogle Scholar
  178. R. Yelle, Icarus 170, 167–179 (2004) ADSGoogle Scholar
  179. K.J. Zahnle, J.C.G. Walker, Rev. Geophys. 20, 280–292 (1982) ADSGoogle Scholar
  180. K. Zahnle, J.B. Pollack, J.F. Kasting, Icarus 84, 503–527 (1990) ADSGoogle Scholar
  181. A.P. Zent, R.C. Quinn, J. Geophys. Res. 100, 5341–5349 (1995) ADSGoogle Scholar
  182. M.H.G. Zhang, J.G. Luhmann, S.W. Bougher, A.F. Nagy, J. Geophys. Res. 98, 10,915–10,923 (1993a) ADSGoogle Scholar
  183. M.H.G. Zhang, J.G. Luhmann, A.F. Nagy, J.S. Spreiter, S.S. Stahara, J. Geophys. Res. 98, 3311–3318 (1993b) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Yuri N. Kulikov
    • 1
  • Helmut Lammer
    • 2
  • Herbert I. M. Lichtenegger
    • 2
  • Thomas Penz
    • 2
  • Doris Breuer
    • 3
  • Tilman Spohn
    • 3
  • Rickard Lundin
    • 4
  • Helfried K. Biernat
    • 2
  1. 1.Polar Geophysical Institute (PGI)Russian Academy of SciencesMurmanskRussian Federation
  2. 2.Space Research InstituteAustrian Academy of SciencesGrazAustria
  3. 3.Institute of Planetary ResearchGerman Aerospace CenterBerlinGermany
  4. 4.Swedish Institute of Space Physics (IRF)KirunaSweden

Personalised recommendations