Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Origin and Evolution of the Light Nuclides

  • 89 Accesses

  • 16 Citations

Abstract

After a short historical (and highly subjective) introduction to the field, I discuss our current understanding of the origin and evolution of the light nuclides D, 3He, 4He, 6Li, 7Li, 9Be, 10B and 11B. Despite considerable observational and theoretical progress, important uncertainties still persist for each and every one of those nuclides. The present-day abundance of D in the local interstellar medium is currently uncertain, making it difficult to infer the recent chemical evolution of the solar neighborhood. To account for the observed quasi-constancy of 3He abundance from the Big Bang to our days, the stellar production of that nuclide must be negligible; however, the scarce observations of its abundance in planetary nebulae seem to contradict this idea. The observed Be and B evolution as primaries suggests that the source composition of cosmic rays has remained ∼constant since the early days of the Galaxy, a suggestion with far reaching implications for the origin of cosmic rays; however, the main idea proposed to account for that constancy, namely that superbubbles are at the source of cosmic rays, encounters some serious difficulties. The best explanation for the mismatch between primordial Li and the observed “Spite-plateau” in halo stars appears to be depletion of Li in stellar envelopes, by some yet poorly understood mechanism. But this explanation impacts on the level of the recently discovered early “6Li plateau”, which (if confirmed), seriously challenges current ideas of cosmic ray nucleosynthesis.

This is a preview of subscription content, log in to check access.

References

  1. M. Asplund, D. Lambert, P. Nissen, F. Primas, V. Smith, Astrophys. J. 644, 229–259 (2006)

  2. T. Bania, R. Rood, D. Balser, Nature 415, 54–57 (2002)

  3. W.R. Binns, M.E. Wiedenbeck, M. Arnould et al., Astrophys. J. 634, 351–364 (2005)

  4. D.C. Black, Nature 234, 148 (1971)

  5. M. Burbidge, G. Burbidge, W. Fowler, F. Hoyle, Rev. Mod. Phys. 29, 547–650 (1957)

  6. A.W.G. Cameron, W. Fowler, Astrophys. J. 164, 111–114 (1971)

  7. S. Cartledge, J. Lauroesch, D. Meyer, U. Sofia, Astrophys. J. 641, 327–346 (2006)

  8. C. Charbonnel, Astrophys. J. 453, L41–L44 (1995)

  9. C. Charbonnel, J. Do Nascimento, Astron. Astrophys. 336, 915–919 (1998)

  10. C. Charbonnel, F. Primas, Astron. Astrophys. 442, 961–992 (2005)

  11. C. Chiappini, A. Renda, F. Matteucci, Astron. Astrophys. 395, 789–801 (2002)

  12. D. Dearborn, D. Schramm, G. Steigman, Astrophys. J. 302, 35–38 (1986)

  13. D. Dearborn, G. Steigman, M. Tosi, Astrophys. J. 465, 887–898 (1996)

  14. D. Duncan, D. Lambert, M. Lemke, Astrophys. J. 401, 584–595 (1992)

  15. R. Epstein, Nature 263, 198–202 (1976)

  16. W. Fowler, J. Greenstein, F. Hoyle, PASP 73, 326–326 (1962)

  17. D. Galli, in Chemical Abundances and Mixing, ed. by S. Randich, L. Pasquini (Springer, 2005), pp. 343–348

  18. D. Galli, L. Stanghellini, M. Tosi, F. Palla, Astrophys. J. 477, 218–218 (1997)

  19. J. Geiss, H. Reeves, Astron. Astrophys. 18, 126 (1972)

  20. J. Geiss, G. Gloeckler, Space Sci. Rev. 106, 3–18 (2002)

  21. J. Geiss, G. Gloeckler, C. Charbonnel, Astrophys. J. 578, 862–867 (2002)

  22. G. Gloeckler, J. Geiss, Nature 381, 210–212 (1996)

  23. J.R. Gott, III, D., Schramm, B. Tinsley, J. Gunn, Astrophys. J. 194, 543–553 (1974)

  24. G. Hebrard, T. Tripp, P. Chayer et al., Astrophys. J. 635, 1136–1150 (2005)

  25. J. Higdon, R. Lingenfelter, R. Ramaty, Astrophys. J. 509, L33–L36 (1998)

  26. G. Hogan, Astrophys. J. 441, L17–L20 (1995)

  27. F. Hoyle, R. Tayler, Nature 203, 1108–1110 (1964)

  28. I. Iben Jr., Astrophys. J. 147, 624–649 (1967)

  29. K. Jedamzik, Phys. Rev. D 70, 063524 (2004)

  30. D. Knauth, D. Meyer, J. Lauroesch, Astrophys. J. 647, L115–L118 (2006)

  31. A. Korn, F. Grundahl, O. Richard et al., Nature 442, 657–659 (2006)

  32. J. Linsky, B. Draine, H. Moos et al., Astrophys. J. 647, 1106–1124 (2006)

  33. K. Lodders, Astrophys. J. 591, 1220–1247 (2003)

  34. D. Lubowich, J. Pasachoff, T. Balonek et al., Nature 405, 1025–1027 (2000)

  35. M. Meneguzzi, J. Audouze, H. Reeves, Astron. Astrophys. 15, 337–356 (1971)

  36. J.P. Meyer, D. Elisson, L. Drury, Astrophys. J. 487, 182–196 (1997)

  37. G. Meynet, S. Ekström, A. Maeder, Astron. Astrophys. 447, 623–639 (2006)

  38. K. Olive, N. Prantzos, E. Vangioni-Flam, Astrophys. J. 424, 666–670 (1994)

  39. J. Ostriker, B. Tinsley, Astrophys. J. 201, L51–54 (1975)

  40. E. Parizot, A. Marcowith, E. van der Swaluw et al., Astron. Astrophys. 424, 747–760 (2004)

  41. P.J.E. Peebles, Astrophys. J. 146, 542–552 (1966)

  42. A. Penzias, R. Wilson, Astrophys. J. 142, 419–421 (1965)

  43. L. Piau, T. Beers, D. Balsara et al., Astrophys. J. 653, 300–315 (2006)

  44. N. Prantzos, Astron. Astrophys. 310, 106–114 (1996)

  45. N. Prantzos, in Chemical Abundances and Mixing, ed. by S. Randich, L. Pasquini (Springer, 2005), pp. 351–357

  46. N. Prantzos, Astron. Astrophys. 448, 665–675 (2006a)

  47. N. Prantzos, (2006b). astro-ph//0612633

  48. N. Prantzos, J. Silk, Astrophys. J. 507, 229–240 (1998)

  49. N. Prantzos, M. Casse, E. Vangioni-Flam, Astrophys. J. 403, 630–643 (1993a)

  50. N. Prantzos, M. Casse, E. Vangioni-Flam, in Origin and Evolution of the Elements, ed. by N. Prantzos et al. (Cambridge, 1993b), pp. 156–167

  51. N. Prantzos, M. Tosi, R. von Steiger, in Primordial Nuclides and Their Galactic Evolution. ISSI Sp. Sc. Series (Kluwer, 1998)

  52. R. Ramaty, B. Kozlovsky, R. Lingenfelter, H. Reeves, Astrophys. J. 488, 730–748 (1997)

  53. H. Reeves, Rev. Mod. Phys. 66, 193–216 (1994)

  54. H. Reeves, EAS Publ. Ser. 17, 15–19 (2005)

  55. H. Reeves, J.P. Meyer, Astrophys. J. 226, 613–631 (1978)

  56. H. Reeves, W. Fowler, F. Hoyle, Nature 226, 727–729 (1970)

  57. H. Reeves, J. Audouze, W. Foowler, D. Schramm, Astrophys. J. 179, 909–930 (1973)

  58. O. Richard, G. Michaud, J. Richer, Astrophys. J. 619, 538–548 (2005)

  59. A. Rogers, K. Duvedoir, J. Carter et al., Astrophys. J. 630, L41–L44 (2005)

  60. D. Romano, M. Tosi, F. Matteucci, C. Chiappini, MNRAS 346, 295–303 (2003)

  61. D. Romano, M. Tosi, C. Chiappini, F. Matteucci, MNRAS 369, 295–304 (2006)

  62. R. Rood, G. Steigman, B. Tinsley, Astrophys. J. 207, L57–L60 (1976)

  63. S. Ryan, J. Norris, M. Bessell, C. Deliyannis, Astrophys. J. 388, 184–189 (1992)

  64. C. Ryter, H. Reeves, E. Gradsztajn, J. Audouze, Astron. Astrophys. 8, 389–397 (1970)

  65. E. Salerno, F. Bhler, P. Bochsler et al., Astrophys. J. 585, 840–849 (2003)

  66. M. Spite, F. Spite, Astron. Astrophys. 115, 357–366 (1982)

  67. P.D. Serpico, S. Esposito, F. Iocco et al., J. Cosmol. Astropart. Phys. 12, 010 (2004)

  68. G. Steigman, Int. J. Mod. Phys. E 15, 1–35 (2006)

  69. G. Steigman, T.P. Walker, Astrophys. J. 385, L13–L16 (1992)

  70. T.K. Suzuki, S. Inoue, Astrophys. J. 573, 168–173 (2002)

  71. V. Tatischeff, J.-P. Thibaud (2006). astro-ph/0610756

  72. M. Tosi, G. Steigman, F. Matteucci, C. Chiappini, Astrophys. J. 498, 226–235 (1998)

  73. C. Travaglio, S. Randich, D. Galli et al., Astrophys. J. 559, 909–924 (2001)

  74. J. Truran, A.G.W. Cameron, Astrophys. Space Sci. 14, 179–222 (1971)

  75. S. van Dyk, M. Hamuy, A. Fillipenko, Astrophys. J. 111, 2017–2027 (1996)

  76. R. Wagoner, W. Fowler, F. Hoyle, Astrophys. J. 148, 3–49 (1967)

  77. T.P. Walker, G. Steigman, H.-S. Kang et al., Astrophys. J. 376, 51–69 (1991)

  78. M. Wiedenbeck, W.R. Binns, E.R. Christian et al., Astrophys. J. 523, L61–L64 (1999)

  79. S. Woosley, D. Hartmann, R. Hoffman, W. Haxton, Astrophys. J. 356, 272–301 (1990)

  80. J. Yang, M. Turner, D. Schramm et al., Astrophys. J. 281, 493–511 (1984)

Download references

Author information

Correspondence to N. Prantzos.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Prantzos, N. Origin and Evolution of the Light Nuclides. Space Sci Rev 130, 27–42 (2007). https://doi.org/10.1007/s11214-007-9183-5

Download citation

Keywords

  • Light elements
  • Chemical evolution
  • Early Galaxy
  • Metal-poor stars
  • Cosmic rays