Advertisement

Space Science Reviews

, Volume 130, Issue 1–4, pp 341–353 | Cite as

The Local Interstellar Medium: Peculiar or Not?

  • Rosine LallementEmail author
Article

Abstract

The local Interstellar Medium (ISM) at the 500 pc scale is by many respects a typical place in our Galaxy made of hot and tenuous gas cavities blown by stellar winds and supernovae, that includes the 100 pc wide “Local Hot Bubble (LHB)”, dense and cold clouds forming the cavity “walls”, and finally diffuse and warm clouds embedded within the hot gas, such as the Local Interstellar Cloud (LIC) presently surrounding the Sun. A number of measurements however, including abundance data, have contradicted this “normality” of our interstellar environment. Some contradictions have been explained, some not. I review recent observations at different spatial scales and discuss those peculiarities. At all scales Johannes Geiss has played a major role.

At the scale of the first hundred parsecs, there are at least three “anomalies”: (i) the peculiar Gould Belt (GB), (ii) the recently measured peculiar Deuterium abundance pattern, (iii) the low value of the local O, N and 3He gas phase abundances. I discuss here the possibility of a historical link between these three observations: the large scale phenomenon which has generated the Belt, a giant cloud impact or an explosive event could be the common origin.

At the 50–100 parsec scale, some of the unexplained or contradictory measurements of the Local Bubble hot gas, including its EUV/soft X ray emissions, ion column-densities and gas pressure may at least partially be elucidated in the light of the newly discovered X-ray emission mechanism following charge transfer between solar wind high ions and solar system neutrals. The Local Bubble hot gas pressure and temperature may be lower than previously inferred.

Finally, at the smaller scale of the local diffuse cloudlets (a few parsecs), the knowledge of their structures and physical states has constantly progressed by means of nearby star absorption spectroscopy. On the other hand, thanks to anomalous cosmic rays and pickup ions measurements, local abundances of ISM neutral species are now precisely derived and may be compared with the absorption data. Interestingly these comparisons are now accurate enough to reveal other (noninterstellar) sources of pickup ions. However the actual physical state of the ISM 10–20,000 A.U. ahead along the Sun trajectory, which will be the ambient interstellar medium in a few thousands years, remains unknown. Local Bubble hot gas or warm LIC-type gas? More EUV/UV spectroscopic data are needed to answer this question.

Keywords

ISM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Comerón, J. Torra, Astron. Astrophys. 281, 35 (1994) ADSGoogle Scholar
  2. D.P. Cox, Lect. Notes Phys. 506, 121 (1998) ADSCrossRefGoogle Scholar
  3. T.E. Cravens, Astrophys. J. 532(2), L153 (2000) CrossRefADSGoogle Scholar
  4. T.E. Cravens, I.P. Robertson, S.L.J. Snowden, Geophys. Res. 106(A11), 24883 (2001) CrossRefADSGoogle Scholar
  5. A.C. Cummings, E.C. Stone, C.D. Steenberg, Astrophys. J. 578, 194 (2002) CrossRefADSGoogle Scholar
  6. M. De Avillez, D. Breitschwerdt, Astron. Astrophys. 436, 585 (2005) CrossRefADSGoogle Scholar
  7. B.T. Draine, Annu Rev. Astron. Astrophys. 41, 241 (2003) CrossRefADSGoogle Scholar
  8. F. Elias, J. Cabrera-Caño, E.J. Alfaro, Astron. J. 131(5), 2700 (2006a) CrossRefADSGoogle Scholar
  9. F. Elias, E.J. Alfaro, J. Cabrera-Caño, Astron. J. 132(3), 1052 (2006b) CrossRefADSGoogle Scholar
  10. J. Dupuis, S. Vennes, S. Bowyer, A.-K. Pradhan, P. Thejll, Astrophys. J. 455, 574 (1995) CrossRefADSGoogle Scholar
  11. P.C. Frisch, Space Sci. Rev. (2007) this volume Google Scholar
  12. J. Geiss, G. Gloeckler, C. Charbonnel, Astrophys. J. 578, 863 (2002) CrossRefADSGoogle Scholar
  13. G. Gloeckler, J. Geiss, Space Sci. Rev. 84, 475 (1998) CrossRefGoogle Scholar
  14. G. Gloeckler, J. Geiss, Space Sci. Rev. 97, 169 (2001) CrossRefADSGoogle Scholar
  15. G. Gloeckler, J. Geiss, Adv. Space Res. 34, 53 (2004) CrossRefADSGoogle Scholar
  16. C. Gry, L. Lemonon, A. Vidal-Madjar, M. Lemoine, R. Ferlet, Astron. Astrophys. 302, 497 (1995) ADSGoogle Scholar
  17. G. Hébrard, H.W. Moos, Astrophys. J. 599, 297 (2003) CrossRefADSGoogle Scholar
  18. G. Hébrard, T.M. Tripp, P. Chayer, S.D. Friedman, J. Dupuis, P. Sonnentrucker, G.M. Williger, H.W. Moos, Astrophys. J. 635(2), 1136 (2005) CrossRefADSGoogle Scholar
  19. M. Hurwitz, T.P. Sasseen, M.M. Sirk, Astrophys. J. 623(2), 911 (2005) CrossRefADSGoogle Scholar
  20. V. Izmodenov, Y. Malama, G. Gloeckler, J. Geiss, Astron. Astrophys. 414, L29–L32 (2004) CrossRefADSGoogle Scholar
  21. E.B. Jenkins, Astrophys. J. 580, 938 (2002) CrossRefADSGoogle Scholar
  22. J. Kerp, J. Pietz, P.M.W. Kalberla, W.B. Burton, R. Egger, M.J. Freyberg, D. Hartmann, U. Mebold, Lect. Notes Phys. 506, 457 (1998) ADSGoogle Scholar
  23. D. Koutroumpa, R. Lallement, V. Kharchenko, A. Dalgarno, R. Pepino, V. Izmodenov, E. Quémerais, Astron. Astrophys. 460, 289 (2006) CrossRefADSGoogle Scholar
  24. R. Lallement, Lect. Notes Phys. 506, 19 (1998) ADSGoogle Scholar
  25. R. Lallement, Astron. Astrophys. 422, 391 (2004) CrossRefADSGoogle Scholar
  26. R. Lallement, B.Y. Welsh, J.L. Vergely, F. Crifo, D. Sfeir, Astron. Astrophys. 411, 447 (2003) CrossRefADSGoogle Scholar
  27. N. Lehner, E.B. Jenkins, C. Gry, H.W. Moos, P. Chayer, S. Lacour, Astrophys. J. 595, 858 (2003) CrossRefADSGoogle Scholar
  28. J. Linsky, this issue (2007) Google Scholar
  29. J.L. Linsky, A. Diplas, B.E. Wood, A. Brown, T.R. Ayres, B.D. Savage, Astrophys. J. 451, 335 (1995) CrossRefADSGoogle Scholar
  30. J. Linsky, B. Wood, Astrophys. J. 463, 254 (1996) CrossRefADSGoogle Scholar
  31. J. Linsky, B. Draine, W. Moos et al., Astrophys. J. 647, 1106 (2006) CrossRefADSGoogle Scholar
  32. C.M. Lisse, K. Dennerl, J. Englhauser et al., Science 274(5285), 205 (1996) CrossRefADSGoogle Scholar
  33. McCammon et al., Astrophys. J. 576(1), 188 (2002) CrossRefADSGoogle Scholar
  34. C.A. Olano, Astron. Astrophys. 112, 195 (1982) ADSGoogle Scholar
  35. C.A. Olano, Astrophys. J. 121, 295 (2001) ADSGoogle Scholar
  36. C. Perrot, I. Grenier, Astron. Astrophys. 404, 519 (2003) CrossRefADSGoogle Scholar
  37. W.G.L. Pöppel, Fundam. Cosm. Phys. 18, 1 (1997) ADSGoogle Scholar
  38. N. Prantzos, this volume (2007) Google Scholar
  39. S. Redfield, J.L. Linsky, Astrophys. J. 602(2), 796 (2004) CrossRefADSGoogle Scholar
  40. N.A. Schwadron, M. Combi, W. Huebner, D.J. McComas, Geophys. Res. Lett. 29(20), 54 (2002) CrossRefADSGoogle Scholar
  41. J.D. Slavin, P.C. Frisch, Astrophys. J. 565(1), 364 (2002) CrossRefADSGoogle Scholar
  42. S.L. Snowden, R. Egger, D.P. Finkbeiner, M.J. Freyberg, P.P. Plucinsky, Astrophys. J. 493, 715 (1998) CrossRefADSGoogle Scholar
  43. S.L. Snowden, M.R. Collier, K.D. Kuntz, Astrophys. J. 610(2), 1182 (2004) CrossRefADSGoogle Scholar
  44. J. Vallerga, P. Vedder, N. Craig, B.Y. Welsh, Astrophys. J. 411, 729 (1993) CrossRefADSGoogle Scholar
  45. H. Völk, this volume (2007) Google Scholar
  46. R. von Steiger, N.A. Schwadron, L.A. Fisk, J. Geiss, G. Gloeckler, S. Hefti, B. Wilken, R.F. Wimmer Schweingruber, T.H. Zurbuchen, J. Geophys. Res. 105(A12), 27217 (2000) CrossRefADSGoogle Scholar
  47. B.Y. Welsh, R. Lallement, Astron. Astrophys. 436(2), 615 (2005) CrossRefADSGoogle Scholar
  48. B. Wolff, D. Koester, R. Lallement, Astron. Astrophys. 346, 969 (1999) ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Service d’AéronomieCNRSVerrières-le-BuissonFrance

Personalised recommendations