Space Science Reviews

, Volume 131, Issue 1–4, pp 219–246 | Cite as

MESSENGER Mission Design and Navigation

  • James V. McAdams
  • Robert W. Farquhar
  • Anthony H. Taylor
  • Bobby G. Williams


Nearly three decades after the Mariner 10 spacecraft’s third and final targeted Mercury flyby, the 3 August 2004 launch of the MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) spacecraft began a new phase of exploration of the closest planet to our Sun. In order to ensure that the spacecraft had sufficient time for pre-launch testing, the NASA Discovery Program mission to orbit Mercury experienced launch delays that required utilization of the most complex of three possible mission profiles in 2004. During the 7.6-year mission, the spacecraft’s trajectory will include six planetary flybys (including three of Mercury between January 2008 and September 2009), dozens of trajectory-correction maneuvers (TCMs), and a year in orbit around Mercury. Members of the mission design and navigation teams optimize the spacecraft’s trajectory, specify TCM requirements, and predict and reconstruct the spacecraft’s orbit. These primary mission design and navigation responsibilities are closely coordinated with spacecraft design limitations, operational constraints, availability of ground-based tracking stations, and science objectives. A few days after the spacecraft enters Mercury orbit in mid-March 2011, the orbit will have an 80° inclination relative to Mercury’s equator, a 200-km minimum altitude over 60°N latitude, and a 12-hour period. In order to accommodate science goals that require long durations during Mercury orbit without trajectory adjustments, pairs of orbit-correction maneuvers are scheduled every 88 days (once per Mercury year).


Gravity assist MESSENGER Mercury Mission design Navigation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. B.J. Anderson et al., Space Sci. Rev. (2007, this issue) Google Scholar
  2. J.D. Anderson, G. Colombo, P.B. Esposito, E.L. Lau, G.B. Trager, Icarus 71, 337–349 (1987) CrossRefADSGoogle Scholar
  3. G.B. Andrews et al., Space Sci. Rev. (2007, this issue) Google Scholar
  4. R.D. Bourke, J.G. Beerer, Astronaut. Aeronaut. 9, 52–59 (1971) Google Scholar
  5. J.F. Cavanaugh et al., Space Sci. Rev. (2007, this issue) Google Scholar
  6. E.J. Christensen et al., J. Guid. Control 2, 179–183 (1979) ADSCrossRefGoogle Scholar
  7. M.I. Cruz, G.J. Bell, Acta Astronaut. 35(Suppl.), 427–433 (1995) CrossRefADSGoogle Scholar
  8. R.L. Dowling, W.J. Kosmann, M.A. Minovitch, R.W. Ridenoure, Am. Astronaut. Soc. Hist. Ser., Hist. Rocket. Astronaut. 20, 27–103 (1997) Google Scholar
  9. J.A. Dunne, E. Burgess, The Voyage of Mariner-10, SP-424 (NASA, 1978), 222 pp. Google Scholar
  10. C.J. Ercol, A.G. Santo, Dermination of optimum thermal phase angles at Mercury perihelion for an orbiting spacecraft. 29th International Conference on Environmental Systems, Society of Automotive Engineers, Tech. Paper Ser., 1999-01-21123, Denver, CO, 1999, 10 pp. Google Scholar
  11. A.L. Friedlander, H. Feingold, Mercury orbiter transport study. Report No. SAI 1-120-580-T6, Science Applications, Inc., Schaumburg, IL, 1977, 85 pp. Google Scholar
  12. J.O. Goldsten et al., Space Sci. Rev. (2007, this issue) Google Scholar
  13. R. Grard, G. Scoon, M. Coradini, Eur. Space Agency J. 18, 197–205 (1994) Google Scholar
  14. S.E. Hawkins III et al., Space Sci. Rev. (2007, this issue) Google Scholar
  15. G.R. Hollenbeck, D.G. Roos, P.S. Lewis, Study of ballistic mode Mercury orbiter missions. Report NASA CR-2298, Martin Marietta Corporation, Denver, CO, 1973, 104 pp. Google Scholar
  16. Y. Langevin, Acta Astronaut. 47, 443–452 (2000) CrossRefADSGoogle Scholar
  17. J.C. Leary et al., Space Sci. Rev. (2007, this issue) Google Scholar
  18. J.V. McAdams, J.L. Horsewood, C.L. Yen, Discovery-class Mercury orbiter trajectory design for the 2005 launch opportunity. American Institute of Aeronautics and Astronautics/American Astronautical Society Astrodynamics Specialist Conference and Exhibit, paper AIAA-98-4283, Boston, MA, 1998, 7 pp. Google Scholar
  19. J.V. McAdams, R.F. Farquhar, C.L. Yen, Adv. Astronaut. Sci. 109, 2189–2204 (2002) Google Scholar
  20. J.V. McAdams, D.W. Dunham, R.W. Farquhar, A.H. Taylor, B.G. Williams, Adv. Astronaut. Sci. 120, 1185–1204 (2005) Google Scholar
  21. W.E. McClintock, M.R. Lankton, Space Sci. Rev. (2007, this issue) Google Scholar
  22. J.K. Miller et al., Icarus 155, 3–17 (2002) CrossRefADSGoogle Scholar
  23. M. Minovitch, The determination and characteristics of ballistic interplanetary trajectories under the influence of multiple planetary attractions. JPL Technical Report 32-464, Jet Propulsion Laboratory, Pasadena, CA, 1963, 40 pp. Google Scholar
  24. B.C. Murray, J. Geophys. Res. 80, 2342–2344 (1975a) ADSGoogle Scholar
  25. B.C. Murray, Sci. Am. 233(3), 58–68 (1975b) ADSCrossRefGoogle Scholar
  26. B. Murray, Journey into Space: The First Thirty Years of Space Exploration (Norton, New York, 1989), 382 pp. Google Scholar
  27. R.M. Nelson, L.J. Horn, J.R. Weiss, W.D. Smythe, Acta Astronaut. 35(Suppl.), 387–395 (1995) CrossRefADSGoogle Scholar
  28. C.E. Schlemm II et al., Space Sci. Rev. (2007, this issue) Google Scholar
  29. S.C. Solomon et al., Planet. Space Sci. 49, 1445–1465 (2001) CrossRefADSGoogle Scholar
  30. F.M. Sturms, E. Cutting, J. Spacecr. Rockets 3, 624–631 (1966) ADSGoogle Scholar
  31. B.G. Williams, N.A. Mottinger, N.B. Panagiotacopulos, Icarus 56, 578–589 (1983) CrossRefADSGoogle Scholar
  32. H. Yamakawa, H. Saito, J. Kawaguchi, Y. Kobayashi, H. Hayakawa, T. Mukai, Acta Astronaut. 45, 187–195 (2000) CrossRefADSGoogle Scholar
  33. C.L. Yen, J. Astronaut. Sci. 37, 417–432 (1989) ADSGoogle Scholar
  34. C.L. Yen, Adv. Astronaut. Sci. 108, 799–806 (2001) Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • James V. McAdams
    • 1
  • Robert W. Farquhar
    • 1
  • Anthony H. Taylor
    • 2
  • Bobby G. Williams
    • 2
  1. 1.The Johns Hopkins University Applied Physics LaboratorySpace DepartmentLaurelUSA
  2. 2.Space Navigation and Flight Dynamics PracticeKinetX, Inc.Simi ValleyUSA

Personalised recommendations