Space Science Reviews

, Volume 130, Issue 1–4, pp 389–399

Composition of Anomalous Cosmic Rays



The “classic” anomalous cosmic ray (ACR) component originates as interstellar neutral atoms that drift into the heliosphere, become ionized and picked up by the solar wind, and carried to the outer heliosphere where the pickup ions are accelerated to hundreds of MeV, presumably at the solar wind termination shock. These interstellar ACRs are predominantly singly charged, although higher charge states are present and become dominant above ∼350 MeV. Their isotopic composition is like that of the solar system and unlike that of the source of galactic cosmic rays. A comparison of their energy spectra with the estimated flux of pickup ions flowing into the termination shock reveals a mass-dependent acceleration efficiency that favors heavier ions. There is also a heliospheric ACR component as evidenced by “minor” ACR ions, such as Na, Mg, S, and Si that appear to be singly-ionized ions from a source likely in the outer heliosphere.


Anomalous cosmic rays Composition Local interstellar medium Solar wind termination shock Heliosphere ACE SAMPEX Voyager 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. J.H. Adams Jr. et al., Astrophys. J. 375, L45–L48 (1991) CrossRefADSGoogle Scholar
  2. J.H. Adams Jr., M.D. Leising, in Proc. 22nd Internat. Cosmic Ray Conf., vol. 3 (Dublin, 1991), pp. 304–307 Google Scholar
  3. F. Allegrini et al., J. Geophys. Res. 110, A05105 (2005). doi:10.1029/2004JA010847 CrossRefGoogle Scholar
  4. W.R. Binns et al., Astrophys. J. 634, 351–364 (2005) CrossRefADSGoogle Scholar
  5. R.D. Blandford, J.P. Ostriker, Astrophys. J. Lett. 221, L29–L32 (1978) CrossRefADSGoogle Scholar
  6. L.F. Burlaga et al., Science 309, 2027–2029 (2005) CrossRefADSGoogle Scholar
  7. E.R. Christian et al., Astrophys. J. Lett. 334, L77–L80 (1988) CrossRefADSGoogle Scholar
  8. A.C. Cummings, E.C. Stone, in Proc. 20th Internat. Cosmic Ray Conf., vol. 3 (Moscow, 1987), pp. 413–416 Google Scholar
  9. A.C. Cummings, E.C. Stone, Space Sci. Rev. 78, 117–128 (1996) CrossRefADSGoogle Scholar
  10. A.C. Cummings, E.C. Stone, Adv. Space Res. 23, 509–520 (1999) CrossRefADSGoogle Scholar
  11. A.C. Cummings et al., J. Geophys. Res. (2007, in preparation) Google Scholar
  12. A.C. Cummings et al., Astrophys. J. 578, 194–210 (2002a) CrossRefADSGoogle Scholar
  13. A.C. Cummings et al., Astrophys. J. 581, 1413 (2002b) CrossRefADSGoogle Scholar
  14. A.C. Cummings, E.C. Stone, W.R. Webber, Astrophys. J. Lett. 287, L99–L103 (1984) CrossRefADSGoogle Scholar
  15. A.C. Cummings et al., in Proc. 22nd Internat. Cosmic Ray Conf., vol. 3 (Dublin, 1991), pp. 362–365 Google Scholar
  16. R.B. Decker et al., Science 309, 2020–2024 (2005) CrossRefADSGoogle Scholar
  17. L.A. Fisk et al., Astrophys. J. Lett. 190, L35–L38 (1974) CrossRefADSGoogle Scholar
  18. V. Florinski, G.P. Zank, Geophys. Res. Lett. 33, L15110 (2006). doi:10.1029/2006GL026371 CrossRefADSGoogle Scholar
  19. V. Florinski et al., Astrophys. J. 610, 1169–1181 (2004) CrossRefADSGoogle Scholar
  20. M. Garcia-Munoz et al., Astrophys. J. Lett. 182, L81–L84 (1973) CrossRefADSGoogle Scholar
  21. G. Gloeckler, L. Fisk, Space Sci. Rev. (2007) this volume Google Scholar
  22. G. Gloeckler et al., J. Geophys. Res. 105, 7459–7463 (2000) CrossRefADSGoogle Scholar
  23. D. Hovestadt et al., Phys. Rev. Lett. 31, 650–653 (1973) CrossRefADSGoogle Scholar
  24. J.R. Jokipii, in Physics of the Outer Heliosphere: Proc. of the 1st COSPAR Colloquium (Warsaw, 1990), pp. 169–178 Google Scholar
  25. J.R. Jokipii, Astrophys. J. 393, L41–L43 (1992) CrossRefADSGoogle Scholar
  26. J.R. Jokipii, Astrophys. J. Lett. 466, L47–L50 (1996) CrossRefADSGoogle Scholar
  27. B. Klecker et al., Space Sci. Rev. 83, 259–308 (1998) CrossRefADSGoogle Scholar
  28. B. Klecker et al., in Proc. 25th Internat. Cosmic Ray Conf., vol. 2 (Durban, 1997), pp. 273–276 Google Scholar
  29. S.M. Krimigis et al., Nature 426, 45–48 (2003) CrossRefADSGoogle Scholar
  30. R.A. Leske, in AIP Conf. Proc. 516: 26th Internat. Cosmic Ray Conf., ICRC XXVI, vol. 516 (Salt Lake City, 2000), pp. 274–282 Google Scholar
  31. D.J. McComas, N.A. Schwadron, Geophys. Res. Lett. 33, L04102 (2006). doi:10.1029/2005GL025437 CrossRefGoogle Scholar
  32. F.B. McDonald et al., Astrophys. J. Lett. 187, L105–L108 (1974) CrossRefADSGoogle Scholar
  33. R.A. Mewaldt, in AIP Conf. Proc. 183: Cosmic Abundances of Matter, vol. 183 (Minneapolis, 1989), pp. 124–146 Google Scholar
  34. R.A. Mewaldt, in AIP Conf. Proc. 858: Physics of the Inner Heliosheat, vol. 858 (Honolulu, 2006), pp. 92–97 Google Scholar
  35. R.A. Mewaldt et al., Astrophys. J. Lett. 466, L43–L46 (1996) CrossRefADSGoogle Scholar
  36. M.E. Pesses et al., Astrophys. J. Lett. 246, L85–L89 (1981) CrossRefADSGoogle Scholar
  37. D.V. Reames, Astrophys. J. 518, 473–479 (1999) CrossRefADSGoogle Scholar
  38. N.A. Schwadron et al., Geophys. Res. Lett. 29, 54–51 (2002) ADSGoogle Scholar
  39. N.A. Schwadron et al., J. Geophys. Res. 105, 7465–7472 (2000) CrossRefADSGoogle Scholar
  40. N.A. Schwadron et al., in AIP Conf. Proc. 471: Proc. of the 9th Internat. Solar Wind Conf., vol. 471 (Nantucket, 1999), pp. 487–490 Google Scholar
  41. J.D. Slavin, P.C. Frisch, Astrophys. J. 565, 364–379 (2002) CrossRefADSGoogle Scholar
  42. E.C. Stone et al., Space Sci. Rev. 21, 355–376 (1977) ADSGoogle Scholar
  43. E.C. Stone et al., Space Sci. Rev. 86, 355–376 (1998) ADSGoogle Scholar
  44. E.C. Stone, A.C. Cummings, in Proc. 26th Internat. Cosmic Ray Conf., vol. 7 (Salt Lake City, 1999), pp. 500–503 Google Scholar
  45. E.C. Stone et al., Science 309, 2017–2020 (2005) CrossRefADSGoogle Scholar
  46. V.M. Vasyliunas, G.L. Siscoe, J. Geophys. Res. 81, 1247–1252 (1976) ADSCrossRefGoogle Scholar
  47. W.R. Webber et al., J. Geophys. Res. 110, A07106 (2005). doi:10.1029/2005JA011123 CrossRefADSGoogle Scholar
  48. G.P. Zank et al., Astrophys. J. 556, 494–500 (2001) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Space Radiation LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations