Advertisement

Space Science Reviews

, Volume 131, Issue 1–4, pp 133–160 | Cite as

MESSENGER: Exploring Mercury’s Magnetosphere

  • James A. Slavin
  • Stamatios M. Krimigis
  • Mario H. Acuña
  • Brian J. Anderson
  • Daniel N. Baker
  • Patrick L. Koehn
  • Haje Korth
  • Stefano Livi
  • Barry H. Mauk
  • Sean C. Solomon
  • Thomas H. Zurbuchen
Article

Abstract

The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury offers our first opportunity to explore this planet’s miniature magnetosphere since the brief flybys of Mariner 10. Mercury’s magnetosphere is unique in many respects. The magnetosphere of Mercury is among the smallest in the solar system; its magnetic field typically stands off the solar wind only ∼1000 to 2000 km above the surface. For this reason there are no closed drift paths for energetic particles and, hence, no radiation belts. Magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere, allowing solar wind ions to impact directly the regolith. Inductive currents in Mercury’s interior may act to modify the solar wind interaction by resisting changes due to solar wind pressure variations. Indeed, observations of these induction effects may be an important source of information on the state of Mercury’s interior. In addition, Mercury’s magnetosphere is the only one with its defining magnetic flux tubes rooted beneath the solid surface as opposed to an atmosphere with a conductive ionospheric layer. This lack of an ionosphere is probably the underlying reason for the brevity of the very intense, but short-lived, ∼1–2 min, substorm-like energetic particle events observed by Mariner 10 during its first traversal of Mercury’s magnetic tail. Because of Mercury’s proximity to the sun, 0.3–0.5 AU, this magnetosphere experiences the most extreme driving forces in the solar system. All of these factors are expected to produce complicated interactions involving the exchange and recycling of neutrals and ions among the solar wind, magnetosphere, and regolith. The electrodynamics of Mercury’s magnetosphere are expected to be equally complex, with strong forcing by the solar wind, magnetic reconnection, and pick-up of planetary ions all playing roles in the generation of field-aligned electric currents. However, these field-aligned currents do not close in an ionosphere, but in some other manner. In addition to the insights into magnetospheric physics offered by study of the solar wind–Mercury system, quantitative specification of the “external” magnetic field generated by magnetospheric currents is necessary for accurate determination of the strength and multi-polar decomposition of Mercury’s intrinsic magnetic field. MESSENGER’s highly capable instrumentation and broad orbital coverage will greatly advance our understanding of both the origin of Mercury’s magnetic field and the acceleration of charged particles in small magnetospheres. In this article, we review what is known about Mercury’s magnetosphere and describe the MESSENGER science team’s strategy for obtaining answers to the outstanding science questions surrounding the interaction of the solar wind with Mercury and its small, but dynamic, magnetosphere.

Keywords

Planetary magnetospheres Reconnection Particle acceleration Substorms Mercury MESSENGER 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.H. Acuña et al., Science 279, 1676–1680 (1998) ADSGoogle Scholar
  2. M.H. Acuña et al., Science 284, 790–793 (1999) ADSGoogle Scholar
  3. O. Aharonson, M.T. Zuber, S.C. Solomon, Earth Planet. Sci. Lett. 218, 261–268 (2004) ADSGoogle Scholar
  4. B.J. Anderson et al., Space Sci. Rev. (2007, this issue) Google Scholar
  5. B.J. Anderson, R.E. Erlandson, L.J. Zanetti, J. Geophys. Res. 97, 3075–3088 (1992) ADSGoogle Scholar
  6. B.J. Anderson, J.B. Gary, T.A. Potemra, R.A. Frahm, J.R. Sharber, J.D. Winningham, J. Geophys. Res. 103, 26323–26335 (1998) ADSGoogle Scholar
  7. B.J. Anderson, K. Takahashi, B.A. Toth, Geophys. Res. Lett. 27, 4045–4048 (2000) ADSGoogle Scholar
  8. G.B. Andrews et al., Space Sci. Rev. (2007, this issue) Google Scholar
  9. V. Angelopoulos et al., J. Geophys. Res. 97, 4027–4039 (1992) ADSGoogle Scholar
  10. T.P. Armstrong, S.M. Krimigis, L.J. Lanzerotti, J. Geophys. Res. 80, 4015–4017 (1975) ADSGoogle Scholar
  11. D.N. Baker, J.A. Simpson, J.H. Eraker, J. Geophys. Res. 91, 8742–8748 (1986) ADSGoogle Scholar
  12. D.N. Baker, R.C. Anderson, R.D. Zwickl, J.A. Slavin, J. Geophys. Res. 92, 71–81 (1987a) ADSGoogle Scholar
  13. D.N. Baker et al., J. Geophys. Res. 92, 4707–4712 (1987b) ADSGoogle Scholar
  14. D.N. Baker, T.I. Pulkkinen, V. Angelopoulos, W. Baumjohann, R.L. McPherron, J. Geophys. Res. 101, 12975–13010 (1996) ADSGoogle Scholar
  15. L.F. Bargatze, D.N. Baker, R.L. McPherron, E.W. Hones Jr., J. Geophys. Res. 90, 6387–6394 (1985) ADSGoogle Scholar
  16. T.A. Bida, R.M. Killen, T.H. Morgan, Nature 404, 159–161 (2000) ADSGoogle Scholar
  17. L.G. Blomberg, Planet. Space Sci. 45, 143–148 (1997) ADSGoogle Scholar
  18. A.L. Broadfoot, D.E. Shemansky, S. Kumar, Geophys. Res. Lett. 3, 577–580 (1976) ADSGoogle Scholar
  19. J. Büchner, L.M. Zelenyi, J. Geophys. Res. 94, 11821–11842 (1989) ADSGoogle Scholar
  20. L.F. Burlaga, Planet. Space Sci. 49, 1619–1627 (2001) ADSGoogle Scholar
  21. A.F. Cheng, R.E. Johnson, S.M. Krimigis, L.J. Lanzerotti, Icarus 71, 430–440 (1987) ADSGoogle Scholar
  22. S.P. Christon, Icarus 71, 448–471 (1987) ADSGoogle Scholar
  23. S.P. Christon, J. Feynman, J.A. Slavin, in Magnetotail Physics, ed. by A.T.Y. Lui (Johns Hopkins University Press, Baltimore, 1987), pp. 393–402 Google Scholar
  24. A.J. Coates, A.D. Johnstone, F.M. Neubauer, J. Geophys. Res. 101, 27573–27584 (1996) ADSGoogle Scholar
  25. J.E.P. Connerney, N.F. Ness, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (University of Arizona Press, Tucson, 1988), pp. 494–513 Google Scholar
  26. F.V. Coroniti, C.F. Kennel, J. Geophys. Res. 78, 2837–2851 (1973) ADSGoogle Scholar
  27. S.W.H. Cowley, Space Sci. Rev. 25, 217–275 (1980) ADSGoogle Scholar
  28. S.W.H. Cowley et al., J. Geophys. Res. 110, A02201 (2005). doi:  10.1029/2004JA010796 Google Scholar
  29. D.C. Delcourt, T.E. Moore, S. Orsini, A. Millilo, J.-A. Sauvaud, Geophys. Res. Lett. 29, 1591 (2002). doi:  10.1029/2001GL013829 ADSGoogle Scholar
  30. D.C. Delcourt et al., Ann. Geophys. 21, 1723–1736 (2003) ADSCrossRefGoogle Scholar
  31. D.L. Domingue et al., Space Sci. Rev. (2007, this issue) Google Scholar
  32. J.H. Eraker, J.A. Simpson, J. Geophys. Res. 91, 9973–9993 (1986) ADSGoogle Scholar
  33. J.A. Fedder, J.G. Lyon, Geophys. Res. Lett. 14, 880–883 (1987) ADSGoogle Scholar
  34. S.F. Fung, R.A. Hoffman, J. Geophys. Res. 97, 8569–8579 (1992) ADSGoogle Scholar
  35. G. Giampieri, A. Balogh, Planet. Space Sci. 49, 1637–1642 (2001) ADSGoogle Scholar
  36. G. Giampieri, A. Balogh, Planet. Space Sci. 50, 757–762 (2002) ADSGoogle Scholar
  37. K.-H. Glassmeier, in Magnetospheric Current Systems, ed. by S.-I. Ohtani, R. Fujii, M. Hesse, R.L. Lysak. Geophysical Mon., vol. 118 (American Geophysical Union, Washington, 2000), pp. 371–380 Google Scholar
  38. K.-H. Glassmeier, N.P. Mager, D.Y. Klimushkin, Geophys. Res. Lett. 30, 1928 (2003). doi:  10.1029/2003GL017175 ADSGoogle Scholar
  39. R.E. Gold et al., Planet. Space Sci. 49, 1467–1479 (2001) ADSGoogle Scholar
  40. J.O. Goldsten et al., Space Sci. Rev. (2007, this issue) Google Scholar
  41. B.E. Goldstein, S.T. Suess, R.J. Walker, J. Geophys. Res. 86, 5485–5499 (1981) ADSGoogle Scholar
  42. L. Gomberoff, H.F. Astudillo, Planet. Space Sci. 46, 1683–1687 (1998) ADSGoogle Scholar
  43. R. Grard, A. Balogh, Planet. Space Sci. 49, 1395–1407 (2001) ADSGoogle Scholar
  44. R. Grard, H. Laakso, T.I. Pulkkinen, Planet. Space Sci. 47, 1459–1463 (1999) ADSGoogle Scholar
  45. J. Grosser, K.-H. Glassmeier, S. Stadelmann, Planet. Space Sci. 52, 1251–1260 (2004) ADSGoogle Scholar
  46. S.E. Hawkins III, et al., Space Sci. Rev. (2007, this issue) Google Scholar
  47. M. Hesse, J. Birn, J. Geophys. Res. 96, 19417–19426 (1991) ADSGoogle Scholar
  48. T.W. Hill, J. Geophys. Res. 80, 4689–4699 (1975) ADSGoogle Scholar
  49. T.W. Hill, A.J. Dessler, R.A. Wolf, Geophys. Res. Lett. 3, 429–432 (1976) ADSGoogle Scholar
  50. R.E. Holzer, J.A. Slavin, J. Geophys. Res. 83, 3831–3839 (1978) ADSGoogle Scholar
  51. E.W. Hones Jr. et al., Geophys. Res. Lett. 11, 5–7 (1984) ADSGoogle Scholar
  52. H. Hoshino, J. Geophys. Res. 110, A102154 (2005). doi:  10.1029/2005JA011229 Google Scholar
  53. L.L. Hood, G. Schubert, J. Geophys. Res. 84, 2641–2647 (1979) ADSGoogle Scholar
  54. D.M. Hunten, T.H. Morgan, D.E. Schemansky, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (University of Arizona Press, Tucscon, 1988), pp. 562–612 Google Scholar
  55. T. Iijima, T.A. Potemra, J. Geophys. Res. 83, 599–615 (1978) ADSGoogle Scholar
  56. W.-H. Ip, Icarus 71, 441–447 (1987) ADSGoogle Scholar
  57. W.-H. Ip, A. Kopp, J. Geophys. Res. 107, 1348 (2002). doi:  10.1029/2001JA009171 Google Scholar
  58. W.-H. Ip, A. Kopp, Adv. Space. Res. 33, 2172–2175 (2004) ADSGoogle Scholar
  59. D.J. Jackson, D.B. Beard, J. Geophys. Res. 82, 2828–2836 (1977) ADSGoogle Scholar
  60. P. Janhunen, E. Kallio, Ann. Geophys. 22, 1829–1830 (2004) ADSCrossRefGoogle Scholar
  61. K. Kabin, T.I. Gombosi, D.L. DeZeeuw, K.G. Powell, Icarus 143, 397–406 (2000) ADSGoogle Scholar
  62. Y. Kazama, T. Mukai, J. Geophys Res. 110, A07213 (2005). doi:  10.1029/2004JA010820 Google Scholar
  63. R.M. Killen, W.-H. Ip, Rev. Geophys. Space Phys. 37, 361–406 (1999) Google Scholar
  64. R.M. Killen et al., J. Geophys. Res. 106, 20509–20525 (2001) ADSGoogle Scholar
  65. R.M. Killen, M. Sarantos, A.E. Potter, P.H. Reiff, Icarus 171, 1–19 (2004) ADSGoogle Scholar
  66. M.G. Kivelson, Space Sci. Rev. 116, 299–318 (2005) ADSGoogle Scholar
  67. P.L. Koehn, Ph.D. Thesis, University of Michigan, Ann Arbor, 2002 Google Scholar
  68. H. Korth et al., Planet. Space Sci. 54, 733–746 (2004) ADSGoogle Scholar
  69. J. Korth, B.J. Anderson, Frey, C.L. Waters, Ann. Geophys. 23, 1295–1310 (2005) ADSCrossRefGoogle Scholar
  70. S.M. Krimigis, E.T. Sarris, in Dynamics of the Magnetosphere, ed. by S.-I. Akasofu (Reidel, Dordrecht, 1979), pp. 599–630 Google Scholar
  71. H. Lammer, S.J. Bauer, Planet. Space Sci. 45, 73–79 (1997) ADSGoogle Scholar
  72. H. Lammer et al., Icarus 166, 238–247 (2003) ADSGoogle Scholar
  73. F. Leblanc, J.G. Luhmann, R.E. Johnson, M. Lui, Planet. Space Sci. 51, 339–352 (2003) ADSGoogle Scholar
  74. J.G. Luhmann, C.T. Russell, N.A. Tsyganenko, J. Geophys. Res. 103, 9113–9119 (1998) ADSGoogle Scholar
  75. A.V. Lukyanov, S. Barabash, R. Lundin, P.C. Brandt, Planet. Space Sci. 49, 1677–1684 (2001) ADSGoogle Scholar
  76. S. Massetti et al., Icarus 166, 229–237 (2003) ADSGoogle Scholar
  77. B.H. Mauk, J. Geophys. Res. 91, 13423–13431 (1986) ADSGoogle Scholar
  78. W. McClintock, M.R. Lankton, Space Sci. Rev. (2007, this issue) Google Scholar
  79. R.L. McPherron, C.T. Russell, M.P. Aubry, J. Geophys. Res. 78, 3131–3149 (1973) ADSGoogle Scholar
  80. A. Milillo et al., Space Sci. Rev. 117, 397–443 (2005) ADSGoogle Scholar
  81. D.G. Mitchell et al., Geophys. Res. Lett. 32, L20S01 (2005). doi:  10.1029/2005GL022647 Google Scholar
  82. T. Mukai, K. Ogasawara, Y. Saito, Adv. Space Res. 33, 2166–2171 (2004) ADSGoogle Scholar
  83. N.F. Ness, in Solar System Plasma Physics, vol. II, ed. by C.F. Kennel, L.J. Lanzerotti, E.N. Parker (North-Holland, New York, 1979), pp. 185–206 Google Scholar
  84. N.F. Ness, K.W. Behannon, R.P. Lepping, Y.C. Whang, K.H. Schatten, Science 185, 151–160 (1974) ADSGoogle Scholar
  85. N.F. Ness, K.W. Behannon, R.P. Lepping, J. Geophys. Res. 80, 2708–2716 (1975) ADSGoogle Scholar
  86. N.F. Ness, K.W. Behannon, R.P. Lepping, Y.C. Whang, Icarus 28, 479–488 (1976) ADSGoogle Scholar
  87. K.W. Ogilvie et al., Science 185, 145–150 (1974) ADSGoogle Scholar
  88. K.W. Ogilvie, J.D. Scudder, V.M. Vasyliunas, R.E. Hartle, G.L. Siscoe, J. Geophys. Res. 82, 1807–1824 (1997) ADSGoogle Scholar
  89. C. Othmer, K.-H. Glassmeier, R. Cramm, J. Geophys. Res. 104, 10369–10378 (1999) ADSGoogle Scholar
  90. A.E. Potter, T.H. Morgan, Science 229, 651–653 (1985) ADSGoogle Scholar
  91. A.E. Potter, T.H. Morgan, Icarus 67, 336–340 (1986) ADSGoogle Scholar
  92. A.E. Potter, R.M. Killen, T.H. Morgan, Planet. Space Sci. 47, 1441–1448 (1999) ADSGoogle Scholar
  93. F.J. Rich, D.A. Hardy, R.H. Redus, M.S. Gussenhoven, J. Geophys. Res. 95, 7893–7913 (1990) ADSGoogle Scholar
  94. I.G. Richardson, C.J. Owen, J.A. Slavin, J. Geophys. Res. 101, 2723–2740 (1996) ADSGoogle Scholar
  95. S.K. Runcorn, Nature 253, 701–703 (1975a) ADSGoogle Scholar
  96. S.K. Runcorn, Phys. Earth Planet. Inter. 10, 327–335 (1975b) ADSGoogle Scholar
  97. C.T. Russell, Geophys. Res. Lett. 4, 387–390 (1977) ADSGoogle Scholar
  98. C.T. Russell, R.J. Walker, J. Geophys. Res. 90, 11067–11074 (1985) ADSGoogle Scholar
  99. C.T. Russell, D.N. Baker, J.A. Slavin, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (University of Arizona Press, Tucscon, 1988), pp. 514– 561 Google Scholar
  100. C.T. Russell, Geophys. Res. Lett. 16, 1253–1256 (1989) ADSGoogle Scholar
  101. A.G. Santo et al., Planet. Space Sci. 49, 1481–1500 (2001) ADSGoogle Scholar
  102. M. Sarantos, P.H. Reiff, T.W. Hill, R.M. Killen, A.L. Urquhart, Planet. Space Sci. 49, 1629–1635 (2001) ADSGoogle Scholar
  103. E.T. Sarris, W.I. Axford, Nature 77, 460–462 (1979) ADSGoogle Scholar
  104. S. Sasaki, E. Kurahashi, Adv. Space. Res. 33, 2152–2155 (2004) ADSGoogle Scholar
  105. J.-A. Sauvaud et al., J. Geophys. Res. 104, 28565–28586 (1999) ADSGoogle Scholar
  106. C.E. Schlemm II et al., Space Sci. Rev. (2007, this issue) Google Scholar
  107. M. Scholer, G. Gloecker, B. Klecker, F.M. Ipavich, D. Hovestadt, E.J. Smith, J. Geophys. Res. 89, 6717–6727 (1984) ADSGoogle Scholar
  108. K. Shiokawa et al., J. Geophys. Res. 103, 4491–4507 (1998) ADSGoogle Scholar
  109. D.G. Sibeck, R.E. Lopez, E.C. Roelof, J. Geophys. Res. 96, 5489–5495 (1991) ADSGoogle Scholar
  110. J.A. Simpson, J.H. Eraker, J.E. Lamport, P.H. Walpole, Science 185, 160–166 (1974) ADSGoogle Scholar
  111. G.L. Siscoe, L. Christopher, Geophys. Res. Lett. 2, 158–160 (1975) ADSGoogle Scholar
  112. G.L. Siscoe, N.F. Ness, C.M. Yeates, J. Geophys. Res. 80, 4359–4363 (1975) ADSGoogle Scholar
  113. J.A. Slavin, Adv. Space Res. 33, 1587–1872 (2004) ADSGoogle Scholar
  114. J.A. Slavin, R.E. Holzer, J. Geophys. Res. 84, 2076–2082 (1979a) ADSGoogle Scholar
  115. J.A. Slavin, R.E. Holzer, Phys. Earth Planet. Inter. 20, 231–236 (1979b) ADSGoogle Scholar
  116. J.A. Slavin, R.E. Holzer, J. Geophys. Res. 86, 11401–11418 (1981) ADSGoogle Scholar
  117. J.A. Slavin, C.J. Owen, J.E.P. Connerney, S.P. Christon, Planet. Space Sci. 45, 133–141 (1997) ADSGoogle Scholar
  118. J.A. Slavin et al., Geophys. Res. Lett. 11, 657–660 (1984) ADSGoogle Scholar
  119. J.A. Slavin et al., J. Geophys. Res. 107, 1106 (2002). doi:  10.1029/2000JA003501 Google Scholar
  120. S.C. Solomon, Icarus 28, 509–521 (1976) ADSGoogle Scholar
  121. S.C. Solomon et al., Planet. Space Sci. 49, 1445–1465 (2001) ADSGoogle Scholar
  122. S.C. Solomon, R.L. McNutt Jr., R.E. Gold, D.L. Domingue, Space Sci. Res. (2007, this issue) Google Scholar
  123. D.J. Southwood, M.G. Kivelson, J. Geophys. Res. 86, 5643–5655 (1981) ADSCrossRefGoogle Scholar
  124. L.J. Srnka, Phys. Earth Planet. Inter. 11, 184–190 (1976) ADSGoogle Scholar
  125. A. Stephenson, Earth Planet. Sci. Lett. 28, 454–458 (1976) ADSGoogle Scholar
  126. D.J. Stevenson, Rep. Prog. Phys. 46, 555–620 (1983) ADSGoogle Scholar
  127. D.J. Stevenson, Earth Planet. Sci. Lett. 82, 114–120 (1987) ADSGoogle Scholar
  128. D.J. Stevenson, T. Spohn, G. Schubert, Icarus 54, 466–489 (1983) ADSGoogle Scholar
  129. S.T. Suess, B.E. Goldstein, J. Geophys. Res. 84, 3306–3312 (1979) ADSGoogle Scholar
  130. T. Terasawa et al., Geophys. Res. Lett. 24, 935–938 (1997) ADSGoogle Scholar
  131. E.I. Tanskanen et al., J. Geophys. Res. 110, A03216 (2005). doi:  10.1029/2004JA010561 Google Scholar
  132. C.L. Waters, B.J. Anderson, K. Liou, Geophys. Res. Lett. 28, 2165–2168 (2001) ADSGoogle Scholar
  133. Y.C. Whang, J. Geophys. Res. 82, 1024–1030 (1977) ADSGoogle Scholar
  134. L.J. Zanetti, T.A. Potemra, Geophys. Res. Lett. 9, 349–352 (1982) ADSGoogle Scholar
  135. M.T. Zuber et al., Space Sci. Rev. (2007, this issue) Google Scholar
  136. T.H. Zurbuchen, P. Koehn, Fisk, T. Gombosi, G. Gloeckler, K. Kabin, Adv. Space Res. 33, 1884–1889 (2004) ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • James A. Slavin
    • 1
  • Stamatios M. Krimigis
    • 2
  • Mario H. Acuña
    • 3
  • Brian J. Anderson
    • 2
  • Daniel N. Baker
    • 4
  • Patrick L. Koehn
    • 5
  • Haje Korth
    • 2
  • Stefano Livi
    • 2
  • Barry H. Mauk
    • 2
  • Sean C. Solomon
    • 6
  • Thomas H. Zurbuchen
    • 7
  1. 1.Heliophysics Science DivisionGoddard Space Flight CenterGreenbeltUSA
  2. 2.The Johns Hopkins University Applied Physics LaboratoryLaurelUSA
  3. 3.Solar System Exploration DivisionGoddard Space Flight CenterGreenbeltUSA
  4. 4.Laboratory for Atmospheric and Space PhysicsUniversity of ColoradoBoulderUSA
  5. 5.Physics and Astronomy DepartmentEastern Michigan UniversityYpsilantiUSA
  6. 6.Department of Terrestrial MagnetismCarnegie Institution of WashingtonWashingtonUSA
  7. 7.Department of Atmospheric, Oceanic and Space SciencesUniversity of MichiganAnn ArborUSA

Personalised recommendations