Space Science Reviews

, Volume 129, Issue 4, pp 391–419

Lunar Reconnaissance Orbiter Overview: The Instrument Suite and Mission

  • Gordon Chin
  • Scott Brylow
  • Marc Foote
  • James Garvin
  • Justin Kasper
  • John Keller
  • Maxim Litvak
  • Igor Mitrofanov
  • David Paige
  • Keith Raney
  • Mark Robinson
  • Anton Sanin
  • David Smith
  • Harlan Spence
  • Paul Spudis
  • S. Alan Stern
  • Maria Zuber
Article
  • 739 Downloads

Abstract

NASA’s Lunar Precursor Robotic Program (LPRP), formulated in response to the President’s Vision for Space Exploration, will execute a series of robotic missions that will pave the way for eventual permanent human presence on the Moon. The Lunar Reconnaissance Orbiter (LRO) is first in this series of LPRP missions, and plans to launch in October of 2008 for at least one year of operation. LRO will employ six individual instruments to produce accurate maps and high-resolution images of future landing sites, to assess potential lunar resources, and to characterize the radiation environment. LRO will also test the feasibility of one advanced technology demonstration package. The LRO payload includes: Lunar Orbiter Laser Altimeter (LOLA) which will determine the global topography of the lunar surface at high resolution, measure landing site slopes, surface roughness, and search for possible polar surface ice in shadowed regions, Lunar Reconnaissance Orbiter Camera (LROC) which will acquire targeted narrow angle images of the lunar surface capable of resolving meter-scale features to support landing site selection, as well as wide-angle images to characterize polar illumination conditions and to identify potential resources, Lunar Exploration Neutron Detector (LEND) which will map the flux of neutrons from the lunar surface to search for evidence of water ice, and will provide space radiation environment measurements that may be useful for future human exploration, Diviner Lunar Radiometer Experiment (DLRE) which will chart the temperature of the entire lunar surface at approximately 300 meter horizontal resolution to identify cold-traps and potential ice deposits, Lyman-Alpha Mapping Project (LAMP) which will map the entire lunar surface in the far ultraviolet. LAMP will search for surface ice and frost in the polar regions and provide images of permanently shadowed regions illuminated only by starlight. Cosmic Ray Telescope for the Effects of Radiation (CRaTER), which will investigate the effect of galactic cosmic rays on tissue-equivalent plastics as a constraint on models of biological response to background space radiation. The technology demonstration is an advanced radar (mini-RF) that will demonstrate X- and S-band radar imaging and interferometry using light weight synthetic aperture radar. This paper will give an introduction to each of these instruments and an overview of their objectives.

Keywords

Moon Lunar Vision for Space Exploration NASA Spacecraft Space instrumentation Remote observation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.B. Campbell, L.M. Carter et al., in Workshop on Radar Investigations of Planetary and Terrestrial Environments, Houston, TX, vol. 6026 (2005) Google Scholar
  2. E.M. Eliason, A.S. McEwen, M.S. Robinson, E.M. Lee, T. Becker, L. Gaddis, et al., in Abstracts of 30th Lunar Planetary Sciences Conference, abstract 1933 (1999) Google Scholar
  3. W.C. Feldman et al., Science 281, 1496 (1998) CrossRefADSGoogle Scholar
  4. W.C. Feldman et al., J. Geophys. Res. E2 105(1), 4125 (2000) ADSGoogle Scholar
  5. C.L. Lichtenberg, Bistatic Radar Observations of the Moon Using the Clementine Spacecraft and Deep Space Network, Ph.D. Thesis (1996) Google Scholar
  6. M.C. Malin et al., J. Geophys. Res. 106, 17651 (2001) CrossRefADSGoogle Scholar
  7. D. McCleese, J. Schofield, F. Taylor, S. Calcutt, M. Foote, D. Kass, et al., J. Geophys. Res. (2007, in press) Google Scholar
  8. A.E. Metzger, J.I. Trombka, L.E. Peterson et al., Science 179, 800 (1973) CrossRefADSGoogle Scholar
  9. I.G. Mitrofanov et al., Science 297, 78 (2002) CrossRefADSGoogle Scholar
  10. S. Nozette, C.L. Lichtenberg, P. Spudis, R. Bonner, W. Ort, M. Robinson, E.M. Shoemaker, Science 274, 1495 (1996) CrossRefADSGoogle Scholar
  11. S. Nozette, M.S. Spudis, D.B.J. Robinson, C. Bussey, R. Bonner, J. Geophys. Res. 106(10), 23253 (2001) CrossRefADSGoogle Scholar
  12. S.J. Ostro, in The Encyclopedia of Physical Science and Technology, 3rd edn., ed. by R.A. Meyers (Academic, Orlando, 2002) p. 12295 Google Scholar
  13. K.J. Peters, Phys. Rev. Revis. B 46, 801 (1992) CrossRefADSGoogle Scholar
  14. R.K. Raney, in Principles and Applications of Imaging Radar, ed. by F. Henderson, A. Lewis (Wiley, New York, 1998), p. 9 Google Scholar
  15. R.K. Raney, Hybrid-Polarity SAR Architecture. CD-ROM Proceedings. IEEE International and Geoscience Remote Sensing Symposium IGARSS, Denver, CO (2006) Google Scholar
  16. D.E. Smith et al., J. Geophys. Res. 106(E10), 23689 (2001) CrossRefADSGoogle Scholar
  17. S.C. Solomon et al., Planet. Space Sci. 49, 1445 (2001) Google Scholar
  18. D.C. Slater, S.A. Stern, T. Booker, J. Scherrer et al., in UV/EUV and Visible Space Instrumentation for Astronomy and Solar Physics, ed. by O.H.W. Siegmund, S. Fineschi, M.A. Gummin, Proceedings of SPIE, vol. 4498 (2001), pp. 239 Google Scholar
  19. N.J.S. Stacy, High-Resolution Synthetic Aperture Radar Observations of the Moons (Cornell University, Ithaca, 1993), p. 210 Google Scholar
  20. N.J.S. Stacy, D.B. Campbell, in Proceedings IEEE Geoscience and Remote Sensing Symposium IGARSS93, Tokyo, Japan (1993), p. 30 Google Scholar
  21. S.A. Stern, J.R. Scherrer, D.C. Slater, G.R. Gladstone, L.A. Young, G.J. Dirks, J.M. Stone, M.W. Davis, in X-Ray, UV, Visible, and IR Instrumentation for Planetary Missions, ed. by O.H.W. Siegmund, G.R. Gladstone. Proceedings of SPIE, vol. 5906B (2005) Google Scholar
  22. S.A. Stern, Rev. Geophys. 37, 453 (1999) CrossRefADSGoogle Scholar
  23. A.P. Vinogradov et al., Space Res. (Russ.) 4, 871 (1966) Google Scholar
  24. R.R. Vondrak, LPI Contrib. 652, 246 (1988) ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Gordon Chin
    • 1
  • Scott Brylow
    • 2
  • Marc Foote
    • 3
  • James Garvin
    • 1
  • Justin Kasper
    • 4
  • John Keller
    • 1
  • Maxim Litvak
    • 5
  • Igor Mitrofanov
    • 5
  • David Paige
    • 10
  • Keith Raney
    • 6
  • Mark Robinson
    • 7
  • Anton Sanin
    • 5
  • David Smith
    • 1
  • Harlan Spence
    • 8
  • Paul Spudis
    • 6
  • S. Alan Stern
    • 9
  • Maria Zuber
    • 4
  1. 1.Goddard Space Flight CenterGreenbeltUSA
  2. 2.Malin Space Science SystemsSan DiegoUSA
  3. 3.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  4. 4.Massachusetts Institute of TechnologyBostonUSA
  5. 5.Russian Federal Space Agency Institute for Space ResearchMoscowRussia
  6. 6.Applied Physics LaboratoryJohns Hopkins UniversityBaltimoreUSA
  7. 7.Arizona State UniversityTempeUSA
  8. 8.Boston UniversityBostonUSA
  9. 9.Southwest Research InstituteBoulderUSA
  10. 10.University of CaliforniaLos AngelesUSA

Personalised recommendations