Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Review of Ionospheric Effects of Solar Wind Magnetosphere Coupling in the Context of the Expanding Contracting Polar Cap Boundary Model

Abstract

This paper reviews the coupling between the solar wind, magnetosphere and ionosphere. The coupling between the solar wind and Earth’s magnetosphere is controlled by the orientation of the Interplanetary Magnetic Field (IMF). When the IMF has a southward component, the coupling is strongest and the ionospheric convection pattern that is generated is a simple twin cell pattern with anti-sunward flow across the polar cap and return, sunward flow at lower latitudes. When the IMF is northward, the ionospheric convection pattern is more complex, involving flow driven by reconnection between the IMF and the tail lobe field, which is sunward in the polar cap near noon. Typically four cells are found when the IMF is northward, and the convection pattern is also more contracted under these conditions. The presence of a strong Y (dawn-dusk) component to the IMF leads to asymmetries in the flow pattern. Reconnection, however, is typically transient in nature both at the dayside magnetopause and in the geomagnetic tail. The transient events at the dayside are referred to as flux transfer events (FTEs), while the substorm process illustrates the transient nature of reconnection in the tail. The transient nature of reconnection lead to the proposal of an alternative model for flow stimulation which is termed the expanding/contracting polar cap boundary model. In this model, the addition to, or removal from, the polar cap of magnetic flux stimulates flow as the polar cap boundary seeks to return to an equilibrium position. The resulting average patterns of flow are therefore a summation of the addition of open flux to the polar cap at the dayside and the removal of flux from the polar cap in the nightside. This paper reviews progress over the last decade in our understanding of ionospheric convection that is driven by transient reconnection such as FTEs as well as by reconnection in the tail during substorms in the context of a simple model of the variation of open magnetic flux. In this model, the polar cap expands when the reconnection rate is higher at the dayside magnetopause than in the tail and contracts when the opposite is the case. By measuring the size of the polar cap, the dynamics of the open flux in the tail can be followed on a large scale.

This is a preview of subscription content, log in to check access.

References

  1. Baker, K. B., Rodger, A. S., and Lu, G.: 1997, J. Geophys. Res. 102, 9603.

  2. Borälv, E., Opgenoorth, H. J., Kauristie, K., Lester, M., Bosqued, J.-M., Dewhurst, J. P., et al.: 2005, Ann. Geophysicae 23, 997.

  3. Chisham, G., Freeman, M. P., Coleman, I. J., Pinnock, M., Hairston, M. R., Lester, M., et al.: 2004, Ann. Geophysicae 22, 4243.

  4. Cowley, S. W. H.: 1998, in J. Moen, et al. (eds.), Polar Cap Boundary Phenomena, pp. 127–140. Kluwer Academic Publishers, Netherlands.

  5. Cowley, S. W. H., and Lockwood, M.: 1992, Ann. Geophysicae 10, 103.

  6. Cowley, S. W. H., Morelli, J. P., and Lockwood, M.: 1991, J. Geophys. Res. 96, 5557.

  7. Davies, J. A., Yeoman, T. K., Rae, I. J., Milan, S. E., Lester, M., Lockwood, M., et al.: 2002, Ann. Geophysicae 20, 781.

  8. Dungey, J. W.: 1961, Phys. Res. Lett. 6, 47.

  9. Dungey, J. W.: 1963, in C. DeWitt, J. Hiebolt, and A. Lebeau (eds.), Geophysics: The Earths Environment, pp. 526–535. Gordon and Breach, Newark, NJ.

  10. Elphic, R. C., Lockwood, M., Cowley, S. W. H., and Sandholt, P. E.: 1990, Geophys. Res. Lett. 17, 2241.

  11. Frank, L. A., Sigwarth, J. B., Craven, J. D., Cravens, J. P., Dolan, J. S., Dvorsky, M. R., et al.: 1995, Space Sci. Rev. 71, 297.

  12. Freeman, M. P., and Southwood, D. J.: 1988, Planet. Space Sci. 36, 509.

  13. Greenwald, R. A., Baker, K. B., Dudeney, J. R., Pinnock, M., Jones, T. B., Thomas, E. C., et al.: 1995, Space Sci. Rev. 71, 761.

  14. Grocott, A., Cowley, S. W. H., Sigwarth, J. B., Watermann, J. F., and Yeoman, T. K.: 2002, Ann. Geophysicae 20, 1577.

  15. Grocott, A., Yeoman, T. K., Nakamura, R., Cowley, S. W. H., Frey, H. U., Reme, H., et al.: 2004, Ann. Geophysicae 22, 1061.

  16. Haerendel, G., Paschmann, G., Sckopke, N., Rossenbauer, H., and Hedgecock, P. C.: 1978, J. Geophys. Res. 83, 3195.

  17. Heppner, J. P., and Maynard, N. C.: 1987, J. Geophys. Res. 92, 4467.

  18. Imber, S. M., Milan, S. E., and Hubert, B.: 2006, Ann. Geophys. 24, 3115.

  19. Lockwood, M.: 1998, in J. Moen, A. Egeland, and M. Lockwood (eds.), Identifying the Open-Closed Field Line Boundary, Polar Cap Boundary Phenomena, pp. 73–90. Kluwer Academic Publishing, Netherlands.

  20. McWilliams, K. A., Yeoman, T. K., and Provan, G.: 2000, Ann. Geophysicae 18, 445.

  21. Mende, S. B., Heetderks, H., Frey, H. U., et al.: 2000, Space Sci. Rev. 91, 243.

  22. Mende, S. B., Carlson, C. W., Frey, H. U., Peticolas, L. M., and östgaard, N.: 2003, J. Geophys. Res. 108(A9), 1344, doi: 10.1029/2002JA009787.

  23. Milan, S. E., Lester, M., Cowley, S. W. H., and Brittnacher, M.: 2000, J. Geophys. Res. 105, 15741.

  24. Milan, S. E., Lester, M., Cowley, S. W. H., Oksavik, K., Brittnacher, M., Greenwald, R. A., et al.: 2003, Ann. Geophysicae 21, 1121.

  25. Milan, S. E., Wild, J. A., Grocott, A., and Draper, N. C.: 2006, Adv. Space Res. 38, 1671.

  26. Nakamura, R.: 2006, Substorms and their solar wind causes. Space Sci. Rev., this volume, doi: 10.1007/s11214-006-9131-9.

  27. Neudegg, D. A., Yeoman, T. K., Cowley, S. W. H., Provan, G., Haerendel, G., Baumjohann, W., et al.: 1999, Ann. Geophysicae 17, 707.

  28. Neudegg, D. A., Cowley, S. W. H., Milan, S. E., Yeoman, T. K., Lester, M., Provan, G., et al.: 2000, Ann. Geophysicae 18, 416.

  29. Neudegg, D. A., Cowley, S. W. H., McWilliams, K. A., Lester, M., Yeoman, T. K., Sigwarth, J., et al.: 2001, Ann. Geophysicae 19, 179.

  30. Pinnock, M., Rodger, A. S., Dudeney, J. R., Baker, K. B., Newell, P. T., Greenwald, R. A., et al.: 1993, J. Geophys. Res. 98, 3767.

  31. Provan, G., Yeoman, T. K., and Milan, S. E.: 1998, Ann. Geophysicae 16, 1411.

  32. Provan, G., Lester, M., Mende, S. B., and Milan, S. E.: 2004, Ann. Geophysicae 22, 3607.

  33. Rishbeth, H., and Garriott, O.: 1969, Introduction to Ionospheric Physics. Academic Press, London.

  34. Ruohoniemi, J. M., and Baker, K. B.: 1998, J. Geophys. Res. 103, 20797.

  35. Russell, C. T.: 1972, in E. R. Dyer (ed.), Critical Problems of Magnetospheric Physics, pp. 1–16. Inter Union Committee on STP, National Academy of Sciences, Washington, DC.

  36. Russell, C. T., and Elphic, R. C.: 1978, Space Sci. Rev. 22, 681.

  37. Russell, C. T., and Elphic, R. C.: 1979, Geophys. Res. Lett. 6, 33.

  38. Schunk, R. W., and Nagy, A. F.: 2000, Ionosphere – Physics, Plasma Physics and Chemistry. CUP, Cambridge.

  39. Siscoe, G., and Huang, T. S.: 1985, J. Geophys. Res. 90, 543.

  40. Torr, M. R., Torr, D. G., Zukic, M., Johnson, R. B., Ajello, J., Banks, P., et al.: 1995, Space Sci. Rev. 71, 329.

  41. Wild, J. A., Cowley, S. W. H., Davies, J. A., Khan, H., Lester, M., Milan, S. E., et al.: 2001, Ann. Geophysicae 19, 1491.

  42. Wild, J. A., Milan, S. E., Cowley, S. W. H., Dunlop, M. W., Owen, C. J., Bosqued, J. M., et al.: 2003, Ann. Geophysicae 21, 1807.

Download references

Author information

Correspondence to M. Lester.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lester, M., Milan, S.E., Provan, G. et al. Review of Ionospheric Effects of Solar Wind Magnetosphere Coupling in the Context of the Expanding Contracting Polar Cap Boundary Model. Space Sci Rev 124, 117–130 (2006). https://doi.org/10.1007/s11214-006-9132-8

Download citation

Keywords

  • solar-terrestrial relations
  • plasmas