Advertisement

Space Science Reviews

, Volume 128, Issue 1–4, pp 529–559 | Cite as

Virtis: An Imaging Spectrometer for the Rosetta Mission

  • A Coradini
  • F. Capaccioni
  • P. Drossart
  • G. Arnold
  • E. Ammannito
  • F. Angrilli
  • A. Barucci
  • G. Bellucci
  • J. Benkhoff
  • G. Bianchini
  • J. P. Bibring
  • M. Blecka
  • D. Bockelee-Morvan
  • M. T. Capria
  • R. Carlson
  • U. Carsenty
  • P. Cerroni
  • L. Colangeli
  • M. Combes
  • M. Combi
  • J. Crovisier
  • M. C. Desanctis
  • E. T. Encrenaz
  • S. Erard
  • C. Federico
  • G. Filacchione
  • U. Fink
  • S. Fonti
  • V. Formisano
  • W. H. Ip
  • R. Jaumann
  • E. Kuehrt
  • Y. Langevin
  • G. Magni
  • T. Mccord
  • V. Mennella
  • S. Mottola
  • G. Neukum
  • P. Palumbo
  • G. Piccioni
  • H. Rauer
  • B. Saggin
  • B. Schmitt
  • D. Tiphene
  • G. Tozzi
Article

Abstract

The VIRTIS (Visual IR Thermal Imaging Spectrometer) experiment has been one of the most successful experiments built in Europe for Planetary Exploration. VIRTIS, developed in cooperation among Italy, France and Germany, has been already selected as a key experiment for 3 planetary missions: the ESA-Rosetta and Venus Express and NASA-Dawn. VIRTIS on board Rosetta and Venus Express are already producing high quality data: as far as Rosetta is concerned, the Earth-Moon system has been successfully observed during the Earth Swing-By manouver (March 2005) and furthermore, VIRTIS will collect data when Rosetta flies by Mars in February 2007 at a distance of about 200 kilometres from the planet. Data from the Rosetta mission will result in a comparison – using the same combination of sophisticated experiments – of targets that are poorly differentiated and are representative of the composition of different environment of the primordial solar system. Comets and asteroids, in fact, are in close relationship with the planetesimals, which formed from the solar nebula 4.6 billion years ago. The Rosetta mission payload is designed to obtain this information combining in situ analysis of comet material, obtained by the small lander Philae, and by a long lasting and detailed remote sensing of the comet, obtained by instrument on board the orbiting Spacecraft. The combination of remote sensing and in situ measurements will increase the scientific return of the mission. In fact, the “in situ” measurements will provide “ground-truth” for the remote sensing information, and, in turn, the locally collected data will be interpreted in the appropriate context provided by the remote sensing investigation. VIRTIS is part of the scientific payload of the Rosetta Orbiter and will detect and characterise the evolution of specific signatures – such as the typical spectral bands of minerals and molecules – arising from surface components and from materials dispersed in the coma. The identification of spectral features is a primary goal of the Rosetta mission as it will allow identification of the nature of the main constituent of the comets. Moreover, the surface thermal evolution during comet approach to sun will be also studied.

Keywords

comets spectroscopy space missions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A'Hearn, M. F., Belton, M. J. S., Delamere, W. A., Kissel, J., Klaasen, K. P., McFadden, L. A., et al.: 2005, Science 310, 258.CrossRefADSGoogle Scholar
  2. A'Hearn, M. F., Millis, R. L., Schleicher, D. G., Osip D. J., and Birch, P. V.: 1995, Icarus 118, 223.CrossRefADSGoogle Scholar
  3. Ammannito, E., Filacchione, G., Coradini, A., Capaccioni, F., Piccioni, G., De Sanctis, M. C., et al.: Rev. Scientific Instrum. 77, 093109-1,10.Google Scholar
  4. Barucci, M. A., Fulchignoni, M., Fornasier, S., Dotto, E., Vernazza, P., Birlan, M., et al.: 2005, A&A 430, 313.CrossRefADSGoogle Scholar
  5. Beliaev, N. A., Kresak, L., and Pittich, E. M.: 1986, Catalogue of Short-Period Comets. Bratislava: Slovak Academy of Sciences, Astronomical Institute.Google Scholar
  6. Bockelee-Morvan, D., and Crovisier, J. (eds.): 1992, Proceedings of the 30th Liege International Astr. Collaboration, p. 65.Google Scholar
  7. Brooke, T. Y., Tokunaga, A. T., Weaver, H. A., Crovisier, J., Bockelee-Morvan, D., and Crisp, D.: 1996, Nature 383, 606.CrossRefADSGoogle Scholar
  8. Brown, R. H., Baines, K. H., Bellucci, G., Bibring, J. P., Buratti, B. J., Capaccioni, F., et al.: 2004, Space Sci. Rev. 115, 111.CrossRefADSGoogle Scholar
  9. Capria, M. T., Coradini, A., and de Sanctis, M. C.: 2003, Adv. Space Res. 31, 2543.CrossRefADSGoogle Scholar
  10. Carusi, A., Kresak, L., Perozzi, E., and Valsecchi, G. B.: 1985, Long-Term Evolution of Short Period Comets. Bristol: England and Accord, MA, Adam Hilger, Ltd.Google Scholar
  11. Choi, Y., Cohen, M., Merk, R., and Prialnik, D.: 2002, Icarus 160, 300.CrossRefADSGoogle Scholar
  12. Clark R. N.: 1981, J. Geophys. Res. 86-B4, 3087.ADSCrossRefGoogle Scholar
  13. Combes, M., Crovisier, J., Encrenaz, T., Moroz, V. I., and Bibring, J.-P.: 1988, Icarus 76, 404.CrossRefADSGoogle Scholar
  14. Cochran, A. L., Barker, E. S., Ramseyer, T. F., and Storrs, A. D.: 1992, Icarus 98, 151.CrossRefADSGoogle Scholar
  15. Coradini, A., Capaccioni, F., Capria, M. T., De Sanctis, M. C., Espinasse, S., Orosei, R., et al.: 1997a, Icarus 129, 317.CrossRefADSGoogle Scholar
  16. Coradini, A., Capaccioni, F., Capria, M. T., De Sanctis, M. C., Espinasse, S., Orosei, R., et al.: 1997b, Icarus 129, 337.CrossRefADSGoogle Scholar
  17. Coradini, A., Capaccioni, F., Drossart P., Semery A., Arnold G., Schade U., et al., Planet. Space Sci. 46, 1291.Google Scholar
  18. Coradini, A., Capaccioni, F., Filacchione, G., Magni, G., Ammannito, E., Capria, M. T., et al.: 2004, L. Colangeli et al. (eds.), The New ROSETTA Targets, p. 223, Kluwer AcademicPublishers.Google Scholar
  19. Crovisier, J., Brooke, T. Y., Hanner, M. S., Keller, H. U., Lamy, P. L., Altieri, B., et al.: 1996, Astron. Astrophys. 315, 385.ADSGoogle Scholar
  20. Crovisier, J., Leech, K., Bockelee-Morvan, D., Brooke, T. Y., Hanner, M. S., Altieri, B., et al.: 1997, Science 275, 1904.CrossRefADSGoogle Scholar
  21. De Sanctis, M. C., Capria, M. T., and Coradini, A.: 2005, Astron. Astrophys. 444, 605.CrossRefADSGoogle Scholar
  22. Festou, M. C., Lecacheux, J., Kohl, J. L., Encrenaz, T., and Baudrand, J.: 1986, Astron. Astrophys. 169, 336.ADSGoogle Scholar
  23. Ammannito, E., Filacchione, G., Coradini, A., Capaccioni, F., Piccioni, G., De Sanctis, M. C., et al.: 2006, Rev. Scientific Instrum. 77, 103106-1,09.Google Scholar
  24. Filacchione, G.: 2006, Calibrazioni a Terra e Prestazioni in Volo di Spettrometri ad Immagine nel Visibile e nel Vicino Infrarosso Per l'esplorazione Planetaria. PhD Dissertation, Università degli studi di Napoli Federico II.Google Scholar
  25. Jones, T. D., Lebofsky, L. A., Lewis, J. S., and Marley, M. S.: 1990, Icarus 88, 172.CrossRefADSGoogle Scholar
  26. Haruyama, J., Yamamoto, T., Mizutani, H., and Greenberg, J. M.: 1992, J. Geophys. Res. 98(E8), 15,079.Google Scholar
  27. Kamoun, P., Campbell, D., Pettengill, G., and Shapiro, I.: 1998, Planet. Space Sci. 47, 23.CrossRefADSGoogle Scholar
  28. Keller, H. U., Kramm, R., and Thomas, N.: 1988, Nature 331, 227.CrossRefADSGoogle Scholar
  29. Kiselev, N. N., and Velichko, F. P.: 1998, Icarus 133, 286.CrossRefADSGoogle Scholar
  30. Kidger, M. R.: 2004, A&A 420, 389.CrossRefADSGoogle Scholar
  31. Kidger, M. R.: 2003, A&A 408, 767.CrossRefADSGoogle Scholar
  32. Mueller, B.: 1992, in Harris A. W., and Bowell E. (eds.), CCD-Photometry of Comets at Large Heliocentric Distancesin Asteroids, Comets and Meteors 1991, p. 425.Google Scholar
  33. Mumma, M. J., Weaver H. A., and Larson, H. P.: 1987, Astron. Astrophys. 187, 419.ADSGoogle Scholar
  34. Mumma, M. J., Di Santi, M. A., Russo, N. D., Fomenkova, M., Magee-Sauer, K., Kaminski, C. D., et al.: 1996, Science 272, 1310.CrossRefADSGoogle Scholar
  35. Oberst, J., Giese, B., Howington-Kraus, E., Kirk, R., Soderblom, L., Buratti, B., et al.: 2004, Icarus 167, 70.CrossRefADSGoogle Scholar
  36. Osip, D., Schleicher, D. G., and Millis, R. L.: 1992, Icarus 98, 115.CrossRefADSGoogle Scholar
  37. Prialnik, D., Benkhoff, J., and Podolak, M.: 2004, in Festou, M. C., Keller, H. U., and Weaver, H. A. (eds.), Comets II. University of Arizona Press, Tucson, p. 359.Google Scholar
  38. Reininger, F. M., Coradini, A., Capaccioni, F., Capria, M. T., Cerroni, P., de Sanctis, M. C., et al.: 1996, in Descour, M. R., Mooney, J. M. (eds.), Proceedings of the SPIE, Vol. 2819, p. 66, Imaging Spectrometry II.Google Scholar
  39. Rickman, H.: 1990, in Huebner, W. F. (ed.), Comet Formation and Evolution. In Physics and Chemistry of Comets. Springer Verlag, p. 245.Google Scholar
  40. Schulz, R., Stüwe, J. A., and Boehnhardt, H.: 2004, Astron. Astrophys. 422, L19.CrossRefADSGoogle Scholar
  41. Sunshine, J. M., A'Hearn, M. F., Groussin, O., Li, J.-Y., Belton, M. J. S., Delamere, W. A., et al.: 2006, Science 311, 1453.CrossRefADSGoogle Scholar
  42. Tancredi, G., Fernndez, J. A., Rickman, H., and Licandro, J.: 2000, Astron. Astrophys. Suppl. 146, 73.CrossRefADSGoogle Scholar
  43. Vernazza, P., Mothé-Diniz, T., Barucci, M. A., Birlan, M, Carvano, J. M. Strazzulla, G., et al.: 2005, Astron. Astrophys. 436, 1113.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • A Coradini
    • 1
  • F. Capaccioni
    • 2
  • P. Drossart
    • 3
  • G. Arnold
    • 4
  • E. Ammannito
    • 1
  • F. Angrilli
    • 5
  • A. Barucci
    • 3
  • G. Bellucci
    • 1
  • J. Benkhoff
    • 18
  • G. Bianchini
    • 5
  • J. P. Bibring
    • 9
  • M. Blecka
    • 14
  • D. Bockelee-Morvan
    • 3
  • M. T. Capria
    • 2
  • R. Carlson
    • 15
  • U. Carsenty
    • 4
  • P. Cerroni
    • 2
  • L. Colangeli
    • 7
  • M. Combes
    • 3
  • M. Combi
    • 11
  • J. Crovisier
    • 3
  • M. C. Desanctis
    • 2
  • E. T. Encrenaz
    • 3
  • S. Erard
    • 3
  • C. Federico
    • 16
  • G. Filacchione
    • 2
  • U. Fink
    • 13
  • S. Fonti
    • 6
  • V. Formisano
    • 1
  • W. H. Ip
    • 17
  • R. Jaumann
    • 4
  • E. Kuehrt
    • 4
  • Y. Langevin
    • 9
  • G. Magni
    • 2
  • T. Mccord
    • 12
  • V. Mennella
    • 7
  • S. Mottola
    • 4
  • G. Neukum
    • 4
  • P. Palumbo
    • 7
  • G. Piccioni
    • 2
  • H. Rauer
    • 4
  • B. Saggin
    • 5
  • B. Schmitt
    • 10
  • D. Tiphene
    • 3
  • G. Tozzi
    • 8
  1. 1.INAFIstituto di Fisica Dello Spazio InterplanetarioRomaItaly
  2. 2.INAFIstituto di Astrofisica Spaziale e Fisica CosmicaRomaItaly
  3. 3.LESIA Observatoire de Paris MeudonParisFrance
  4. 4.DLRBerlinGermany
  5. 5.Dipartimento di Ingegneria MeccanicaUniversitè di PadovaBerlinGermany
  6. 6.Dipartimento di FisicaUniversitè di LecceLecceItaly
  7. 7.Osservatorio di CapodimonteNapoliItaly
  8. 8.Osservatorio Astrofisico di ArcetriFirenzeItaly
  9. 9.Institut d’Astrophysique Spatial CNRSOrsayFrance
  10. 10.Laboratoire de Glaciologie et Geophysique de l’EnvironmentGrenobleFrance
  11. 11.Space Physics Research LaboratoryThe University of MichiganAnn ArborUSA
  12. 12.Department of Earth and Space ScienceUniversity of WashingtonSeattleUSA
  13. 13.Lunar Planetary LaboratoryUniversity of ArizonaTucsonUSA
  14. 14.Polish Academy of SciencesWarsawPoland
  15. 15.NASA JPLPasadenaUSA
  16. 16.Universitè di PerugiaPerugiaItaly
  17. 17.MPIKatlenburgGermany
  18. 18.ESTECAmsterdamThe Netherlands

Personalised recommendations