Advertisement

Space Science Reviews

, Volume 126, Issue 1–4, pp 113–164 | Cite as

The Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) for the Mars Express Mission

  • S. Barabash
  • R. Lundin
  • H. Andersson
  • K. Brinkfeldt
  • A. Grigoriev
  • H. Gunell
  • M. Holmström
  • M. Yamauchi
  • K. Asamura
  • P. Bochsler
  • P. Wurz
  • R. Cerulli-Irelli
  • A. Mura
  • A. Milillo
  • M. Maggi
  • S. Orsini
  • A. J. Coates
  • D. R. Linder
  • D. O. Kataria
  • C. C. Curtis
  • K. C. Hsieh
  • B. R. Sandel
  • R. A. Frahm
  • J. R. Sharber
  • J. D. Winningham
  • M. Grande
  • E. Kallio
  • H. Koskinen
  • P. Riihelä
  • W. Schmidt
  • T. Säles
  • J. U. Kozyra
  • N. Krupp
  • J. Woch
  • S. Livi
  • J. G. Luhmann
  • S. McKenna-Lawlor
  • E. C. Roelof
  • D. J. Williams
  • J.-A. Sauvaud
  • A. Fedorov
  • J.-J. Thocaven
Article

Abstract

The general scientific objective of the ASPERA-3 experiment is to study the solar wind – atmosphere interaction and to characterize the plasma and neutral gas environment with within the space near Mars through the use of energetic neutral atom (ENA) imaging and measuring local ion and electron plasma. The ASPERA-3 instrument comprises four sensors: two ENA sensors, one electron spectrometer, and one ion spectrometer. The Neutral Particle Imager (NPI) provides measurements of the integral ENA flux (0.1–60 keV) with no mass and energy resolution, but high angular resolution. The measurement principle is based on registering products (secondary ions, sputtered neutrals, reflected neutrals) of the ENA interaction with a graphite-coated surface. The Neutral Particle Detector (NPD) provides measurements of the ENA flux, resolving velocity (the hydrogen energy range is 0.1–10 keV) and mass (H and O) with a coarse angular resolution. The measurement principle is based on the surface reflection technique. The Electron Spectrometer (ELS) is a standard top-hat electrostatic analyzer in a very compact design which covers the energy range 0.01–20 keV. These three sensors are located on a scanning platform which provides scanning through 180 of rotation. The instrument also contains an ion mass analyzer (IMA). Mechanically IMA is a separate unit connected by a cable to the ASPERA-3 main unit. IMA provides ion measurements in the energy range 0.01–36 keV/charge for the main ion components H+, He++, He+, O+, and the group of molecular ions 20–80 amu/q. ASPERA-3 also includes its own DC/DC converters and digital processing unit (DPU).

Keywords

space instrumentation Mars solar wind – interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acuña, M. H., et al.: 1998, Science 279, 1676.CrossRefADSGoogle Scholar
  2. Alsop, C., Free, L., and Scott, S.: 1996, UV rejection design and performance of the Cluster PEACE ‘top-hat’ electrostatic analyser, submitted to Proc. AGU Chapman Conference on Measurement Techniques in Space Plasmas.Google Scholar
  3. Barabash, S.: 1995, IRF Scientific Report 228.Google Scholar
  4. Barabash, S., Fedorov, A., Lundin, R., and Sauvaud, J.-A.: 2007, Science (in press).Google Scholar
  5. Barabash, S., Holmström, M., Lukyanov, A., and Kallio, E.: 2002, J. Geophys. Res. 107(A10), 1280, doi:10.1029/2001JA000326.CrossRefGoogle Scholar
  6. Bertaux, J.-L., Leblanc, F., Witasse, O., Quemerais, E., Lilensten, J., Stern, S. A., et al.: 2005, Nature 435, doi:10.1038/nature03603.Google Scholar
  7. Bibring, J.-P., Langevin, Y., Gendrin, A., Gondet, B., Poulet, F., Berth, M., et al: 2005, Science 307, 1576.CrossRefADSGoogle Scholar
  8. Brecht, S. H.: 1997, J. Geophys. Res. 102, 11287.CrossRefADSGoogle Scholar
  9. Brinkfeldt, Klas, Instrumentation for Energteic Neutral Atom Measurements at Mars, Venus, and the Earth: 2005, IRF Scientific Report 288, Ph.D. thesis.Google Scholar
  10. Brinkfeldt, K., Gunell, H., Brandt, P., Barabash, S., Frahm, R. A., Winningham, J. D., et al.: 2006, Icarus 182, 439.Google Scholar
  11. C:son Brandt, P., Barabash, S., Wilson, G. R., Roelof, E. C., and Chase, C. J.: 2000, J. Atmos. Solar Terrestrial Phys. 62, 901.CrossRefADSGoogle Scholar
  12. Carlsson, E., Fedorov, A., Barabash, S., Budnik, E., Grigoriev, A., Gunell, H., et al.: 2006, Icarus 182, 320.CrossRefADSGoogle Scholar
  13. Collier, M. R., Moore, T. E., Ogilvie, K. W., Chornay, D., Keller, J. W., Boardsen, S., et al.: 2001, J. Geophys. Res. 106, 24893.CrossRefADSGoogle Scholar
  14. Crider, D., Acuña, M., Connerney, J., Vignes, D., Ness, N., Krymskii, A., et al.: 2002, Geophys. Res. Lett. 29(8), 1170.CrossRefADSGoogle Scholar
  15. Early, D. S., and Long, D. G.: 2001, IEEE Trans. Geosci. Remote Sensing 39, 291.CrossRefADSGoogle Scholar
  16. Fox, J. L.: 1997, Geophys. Res. Lett. 24, 2901.CrossRefADSGoogle Scholar
  17. Futaana, Y., Barabasha, S., Grigoriev, A., Winningham, D., Frahm, R., and Lundin, R.: Space Sci. Rev., this issue, doi: 10.1007/s11214-006-9026-9.Google Scholar
  18. Galli, A., Wurz, P., Barabash, S., Grigoriev, A., Gunell, H., Lundin, R., et al.: Space Sci. Rev., this issue, doi: 10.1007/s11214-006-9088-8.Google Scholar
  19. Grigoriev, A., Futaana, Y., Barabash, S., and Fedorov, A.: Space Sci. Rev., this issue, doi: 10.1007/s11214-006-9121-y.Google Scholar
  20. Gunell, H., Holmström, M., Barabash, S., Kallio, E., Janhunen, P., Nagy, A. F., et al.: 2006, Plane. Space Sci. 54, 117.CrossRefADSGoogle Scholar
  21. Holmström, M., Barabash, S., and Kallio, E.: 2002, J. Geophys. Res. 107(A10), 1277, JA000325.CrossRefGoogle Scholar
  22. Jans, S.: 2000, Ionization of energetic neutral atoms for application in space instrumentation, Diplomarbeit der Philosophisch-naturwissenschaftlichen Fakultät det Univerität bern.Google Scholar
  23. Johnstone, A. D., Alsop, C., Burge, S., Carter, P. J., Coates, A. J., Coker, A. J., et al.: 1997, in C. P. Escoubet, C. T. Russell, and R. Schmidt (eds.), Kluwer Academic: Dordrecht, Netherlands, Space Sci. Revs. 79, 351.Google Scholar
  24. Kallio, E.: 1996, J. Geophys. Res. 101, 111333.CrossRefGoogle Scholar
  25. Kallio, E., Luhmann, J. G., and Barabash, S.: 1997, J. Geophys. Res. 102, 22183.CrossRefADSGoogle Scholar
  26. Kallio, E., and Janhunen, P.: 2001, J. Geophys. Res. 106, 5617.CrossRefADSGoogle Scholar
  27. Kallio, E., and Barabash, S.: 2000, J. Geophys. Res. 105, 24973.CrossRefADSGoogle Scholar
  28. Kallio, E., and Barabash, S.: 2001, J. Geophys. Res. 106, 165.CrossRefADSGoogle Scholar
  29. Kallio, E., Barabash, S., Brinkfeldt, K., Gunell, H., Holmström, M., Futaana, Y., et al.: 2006, Icarus 182, 448.CrossRefADSGoogle Scholar
  30. Krymskii, A. M., Breus, T. K., et al.: 2003, J. Geophys. Res. 108(A12), 1431.CrossRefGoogle Scholar
  31. Lammer, H., Lichtenegger, H. I. M., Kolb, C., Ribas, I., Guinan, E. F., Abart, R., et al.: 2003, Icarus 165, 9.CrossRefADSGoogle Scholar
  32. Lichtenegger, H., Lammer, H., and Stumptner, W.: 2002, J. Geophys. Res. 107(A10), 1279, doi: 10.1029/2001JA000322.CrossRefGoogle Scholar
  33. Luhmann, J. G., and Kozyra, J. U.: 1991, J. Geophys. Res. 96, 5457.ADSGoogle Scholar
  34. Luhmann, J. G., et al.: 1992, Geophys. Res. Lett. 19, 2151.ADSGoogle Scholar
  35. Lundin, R., et al.: 1991, Geophys. Res. Lett. 18, 1059.ADSGoogle Scholar
  36. Lundin, R., Barabash, H., Andersson, M., Holmström, A., Grigoriev, M., Yamauchi, J.-A., et al.: 2004, Science 305, 1933.CrossRefADSGoogle Scholar
  37. Lundin, R., Winninghan, D., Barabash, S., Frahm, R., Holmström, M., Sauvaud, J.-A., et al.: 2006, Science 311(5763), 980.CrossRefADSGoogle Scholar
  38. Malina, R. F., and Coburn, K. R.: 1984, IEEE Trans. Nuclear Sci. NS-31, 404.ADSGoogle Scholar
  39. Marshall, F. J., Hardy, D. A., Huber, A., Pantazis, J., McGarity, J., Holeman, E., et al.: 1986, Rev. Sci. Instrum. 57(2), 229.CrossRefADSGoogle Scholar
  40. Mura, A., Milillo, A., and Orsini, S.: 2002, J. Geophys. Res. 107(A10), 1278, doi: 10.1029/2001JA-000328.CrossRefGoogle Scholar
  41. Nilsson, H., Carlsson, E., Gunell, H., Futaana, Y., Barabash, S., Lundin, R., et al.: Space Sci. Rev. this issue, doi: 10.1007/s11214-006-9030-0.Google Scholar
  42. Nairn, C. M. C., Grard, R., Skalsky, A., and Trotignon, J. G.: 1991, J. Geophys. Res. 96, 11227.ADSGoogle Scholar
  43. Norberg, O., Yamauchi, M., Lundin, R., Olsen, S., Borg, H., Barabash, S., et al.: 1998, Earth, Planets, Space 50, 199.ADSGoogle Scholar
  44. Norberg, O., Winningham, J. D., Lauche, H., Keith, W., Puccio, W., Olsen, J., et al.: 2001, Ann. Geophys. 19, 593.ADSCrossRefGoogle Scholar
  45. Roelof, E. C., and Skinner, A. J.: 2000, Space Sci. Rev. 91, 437.CrossRefADSGoogle Scholar
  46. Sablik, M. J., Scherrer, J. R., Winningham, J. D., Frahm, R. A., and Schrader, T.: 1990, IEEE Trans. Geosci. Remote Sensing 28, 1034.CrossRefADSGoogle Scholar
  47. Terada, N., Machida, S., and Shinagawa, H.: 2002, J. Geophys. Res. 107, doi:10.1029/2001JA009224.Google Scholar
  48. Verigin, M., et al.: 1991, J. Geophys. Res. 96, 19315.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • S. Barabash
    • 1
  • R. Lundin
    • 1
  • H. Andersson
    • 1
  • K. Brinkfeldt
    • 1
  • A. Grigoriev
    • 1
  • H. Gunell
    • 1
  • M. Holmström
    • 1
  • M. Yamauchi
    • 1
  • K. Asamura
    • 2
  • P. Bochsler
    • 3
  • P. Wurz
    • 3
  • R. Cerulli-Irelli
    • 4
  • A. Mura
    • 4
  • A. Milillo
    • 4
  • M. Maggi
    • 4
  • S. Orsini
    • 4
  • A. J. Coates
    • 5
  • D. R. Linder
    • 5
  • D. O. Kataria
    • 5
  • C. C. Curtis
    • 6
  • K. C. Hsieh
    • 6
  • B. R. Sandel
    • 6
  • R. A. Frahm
    • 7
  • J. R. Sharber
    • 7
  • J. D. Winningham
    • 7
  • M. Grande
    • 8
  • E. Kallio
    • 9
  • H. Koskinen
    • 9
    • 16
  • P. Riihelä
    • 9
  • W. Schmidt
    • 9
  • T. Säles
    • 9
  • J. U. Kozyra
    • 10
  • N. Krupp
    • 11
  • J. Woch
    • 11
  • S. Livi
    • 7
  • J. G. Luhmann
    • 12
  • S. McKenna-Lawlor
    • 13
  • E. C. Roelof
    • 14
  • D. J. Williams
    • 14
  • J.-A. Sauvaud
    • 15
  • A. Fedorov
    • 15
  • J.-J. Thocaven
    • 15
  1. 1.Swedish Institute of Space PhysicsKirunaSweden
  2. 2.Institute of Space and Austranautic StudiesSagamicharaJapan
  3. 3.Physikalisches InstitutUniversity of BernBernSwitzerland
  4. 4.Instituto di Fisica dello Spazio InterplanetariRomeItaly
  5. 5.Mullard Space Science LaboratoryUniversity College LondonSurreyUK
  6. 6.University of ArizonaTucsonUSA
  7. 7.Southwest Research InstituteSan AntonioUSA
  8. 8.Rutherford Appleton LaboratoryOxfordshireUK
  9. 9.Finnish Meteorological InstituteHelsinkiFinland
  10. 10.Space Physics Research LaboratoryUniversity of MichiganAnn ArborUSA
  11. 11.Max-Planck-Institut für SonnensystemforschungKatlenburg-LindauGermany
  12. 12.Space Science Laboratory/University of California in BerkeleyBerkleyUSA
  13. 13.Space Technology Ltd.National University of IrelandMaynoothIreland
  14. 14.Applied Physics Laboratory/John Hopkins UniversityLaurelUSA
  15. 15.Centre d’Etude Spatiale des RayonnementsToulouseFrance
  16. 16.University of HelsinkiHelsinkiFinland

Personalised recommendations