Advertisement

Space Science Reviews

, Volume 126, Issue 1–4, pp 39–62 | Cite as

Energisation of O+ and O+ 2 Ions at Mars: An Analysis of a 3-D Quasi-Neutral Hybrid Model Simulation

  • E. Kallio
  • A. Fedorov
  • S. Barabash
  • P. Janhunen
  • H. Koskinen
  • W. Schmidt
  • R. Lundin
  • H. Gunell
  • M. Holmström
  • Y. Futaana
  • M. Yamauchi
  • A. Grigoriev
  • J. D. Winningham
  • R. Frahm
  • J. R. Sharber
Article

Abstract

We have studied the loss of O+ and O+ 2 ions at Mars with a numerical model. In our quasi-neutral hybrid model ions (H+, He++, O+, O+ 2) are treated as particles while electrons form a massless charge-neutralising fluid. The employed model version does not include the Martian magnetic field resulting from the crustal magnetic anomalies. In this study we focus the Martian nightside where the ASPERA instrument on the Phobos-2 spacecraft and recently the ASPERA-3 instruments on the Mars Express spacecraft have measured the proprieties of escaping atomic and molecular ions, in particular O+ and O+ 2 ions. We study the ion velocity distribution and how the escaping planetary ions are distributed in the tail. We also create similar types of energy-spectrograms from the simulation as were obtained from ASPERA-3 ion measurements. We found that the properties of the simulated escaping planetary ions have many qualitative and quantitative similarities with the observations made by ASPERA instruments. The general agreement with the observations suggest that acceleration of the planetary ions by the convective electric field associated with the flowing plasma is the key acceleration mechanism for the escaping ions observed at Mars.

Keywords

Mars Mars-solar wind interaction Mars Express ASPERA-3 instrument ion escape 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barabash, S., Holmström, M., Lukyanov, A., and Kallio, E.: 2002, J. Geophys. Res. A10, 1280, JA000326.CrossRefADSGoogle Scholar
  2. Barabash, S., et al.: 2004, ESA publication SP-1240, 121.Google Scholar
  3. Brecht, S. H., Ferrante, J. F., and Luhmann, J. G.: J. Geophys. Res. 98, 1345.Google Scholar
  4. Dubinin, E., and 39 co-authors: 2006, Icarus 182(2), 337, doi:10.1016/j.icarus.2005.05.022.CrossRefADSGoogle Scholar
  5. Espley, J. R., Cloutier, P. A., Brain, D. A., Crider, D. H., and Acuña, M. H.: 2004, J. Geophys. Res. 109, doi:10.1029/2003JA010193.Google Scholar
  6. Fedorov, A., and 44 co-authors: 2006, Icarus 182(2), 329, doi:10.1016/j.icarus.2005.09.021.CrossRefADSGoogle Scholar
  7. Kallio, E., Koskinen, H., Barabash, S., Nairn, C. M. C., and Schwingenschuh, K.: 1995, Geophys. Res. Lett. 22, 2449.CrossRefADSGoogle Scholar
  8. Kallio, E., Koskinen, H., Barabash, S., Lundin, R., Norberg, O., and Luhmann, J. G.: 1994, J. Geophys. Res. 99(A12), 23,547.CrossRefADSGoogle Scholar
  9. Kallio, E., and Koskinen, H.: 1999, J. Geophys. Res. 104, 557.CrossRefADSGoogle Scholar
  10. Kallio, E., and Janhunen, P.: 2002, J. Geophys. Res. 107, A3.CrossRefGoogle Scholar
  11. Kallio, E., and 46 co-authors: 2006, Icarus 182(2), 350, doi:10.1016/j.icarus.2005.09.018.CrossRefADSGoogle Scholar
  12. Lammer, H., Lichtenegger, H. I. M., Biernat, H. K., Erkaev, N. V., Arshukova, I. L., Kolb, C., et al.: 2006, Planetary and Space Science, in press.Google Scholar
  13. Liu, Y., Nagy, A. F., Groth, C. P. T., DeZeeuw, D. L., Gombosi, T. I., and Powell, K. G.: 1999, J. Geophys. Res. 26, 2689.Google Scholar
  14. Lundin, R., and 44 co-authors: 2004, Science 305(5692), 1933, DOI: 10.1126/science.1101860.CrossRefADSGoogle Scholar
  15. Lundin, R., and 22 co-authors: 2006, Science 311(5763), 980, DOI: 10.1126/science.1122071.CrossRefADSGoogle Scholar
  16. Lundin, R., and 43 co-authors: 2006, Icarus 182(2), 308, doi:10.1016/j.icarus.2005.10.035.CrossRefADSGoogle Scholar
  17. Tanaka, T.: 1993, J. Geophys. Res. 98(A10), 17,251.ADSCrossRefGoogle Scholar
  18. Terada, N., Machida, S., and Shinagawa, H.: 2002, J. Geophys. Res. 107(A12), 1471, doi:10.1029/ 2001JA009224.CrossRefGoogle Scholar
  19. Winningham, J. D., and 44 co-authors: 2006, Icarus 182(2), 360, doi:10.1016/j.icarus.2005.10.033.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • E. Kallio
    • 1
  • A. Fedorov
    • 2
  • S. Barabash
    • 3
  • P. Janhunen
    • 1
    • 4
  • H. Koskinen
    • 1
    • 4
  • W. Schmidt
    • 1
  • R. Lundin
    • 3
  • H. Gunell
    • 3
  • M. Holmström
    • 3
  • Y. Futaana
    • 3
    • 6
  • M. Yamauchi
    • 3
  • A. Grigoriev
    • 3
  • J. D. Winningham
    • 5
  • R. Frahm
    • 5
  • J. R. Sharber
    • 5
  1. 1.Finnish Meteorological InstituteHelsinkiFinland
  2. 2.Centre d’Etude Spatiale des RayonnementsToulouseFrance
  3. 3.Swedish Institute of Space PhysicsKirunaSweden
  4. 4.Department of Physical SciencesUniversity of HelsinkiHelsinkiFinland
  5. 5.Southwest Research InstituteSan AntonioUSA
  6. 6.Institute of Space and Astronautical ScienceJapan Aerospace Exploration AgencySagamiharaJapan

Personalised recommendations