Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Locations of Atmospheric Photoelectron Energy Peaks Within the Mars Environment

Abstract

By identifying peaks in the photoelectron spectrum produced by photoionization of CO2 in the Martian atmosphere, we have conducted a pilot study to determine the locations of these photoelectrons in the space around Mars. The significant result of this study is that these photoelectrons populate a region around Mars bounded externally by the magnetic pileup boundary, and internally by the lowest altitude of our measurements (∼250 km) on the dayside and by a cylinder of approximately the planetary radius on the nightside. It is particularly noteworthy that the photoelectrons on the nightside are observed from the terminator plane tailward to a distance of ∼3 R M, the Mars Express apoapsis. The presence of the atmospherically generated photoelectrons on the nightside of Mars may be explained by direct magnetic field line connection between the nightside observation locations and the Martian dayside ionosphere. Thus the characteristic photoelectron peaks may be used as tracers of magnetic field lines for the study of the magnetic field configuration and particle transport in the Martian environment.

This is a preview of subscription content, log in to check access.

References

  1. Barabash, S., et al.: 2004, in Wilson, A., and Chicarro, A. (eds.), Mars Express: The Scientific Payload, European Space Agency Special Report SP-1240, European Space Agency Research and Scientific Support, European Space Research and Technology Centre, Noordwijk, The Netherlands, p. 121.

  2. Bertucci, C., Mazelle, C., and Acuña, M. H.: 2005, J. Atmos. Sol. Terr. Phys. 67, 1797.

  3. Crider, D., Cloutier, P., Law, C., Walker, P., Chen, Y., Acuña, M., et al.: 2000, Geophys. Res. Lett. 27(1), 45.

  4. Fox, J. L.: 2004, J. Geophys. Res. 109, A11310, doi:10.1029/2004JA010380.

  5. Fox, J. L., and Dalgarno, A.: 1979, J. Geophys. Res. 84, 7315.

  6. Frahm R., et al.: 2006, Icarus 182, 371.

  7. Harnett, E. M., and Winglee, R. M.: 2003, Geophys. Res. Lett. 30(20), 2074, doi:10.1029/2003 GL017852.

  8. Hinterreger, H. E.: 1976, J. Atmos. Terr. Phys. 38, 791.

  9. Liemohn, M. W., et al.: 2006, Icarus 182, 383.

  10. Liemohn, M. W., Ma, Y., Frahm, R. A., Fang, X., Kozyra, J. U., Nagy, A. F., et al.: Space Sci. Rev., this issue, doi: 10.1007/s11214-006-9116-8.

  11. Lundin, R., et al.: 2004, Science 305, 1933.

  12. Ma, Y., Nagy, A. F., Hansen, K. C., DeZeeuw, D. L., Gombosi, T. I., and Powell, K. G.: 2002, J. Geophys. Res. 107(A10), 1282, doi:10.1029/2002JA009293.

  13. Ma, Y., Nagy, A. F., Sokolov, I. V., and Hansen, K. C.: 2004, J. Geophys. Res. 109, A07211, doi:10.1029/2003JA010367.

  14. Mantas, G. P., and Hanson, W. B.: 1979, J. Geophys. Res. 84, 369.

  15. Mitchell, D. L., Lin, R. P., Mazelle, C., Réme, H., Cloutier, P. A., Connerney, J. E. P., et al.: 2001, J. Geophys. Res. 106, 23419.

  16. Nagy, A. F., et al.: 2004, Space Sci. Rev. 111, 33.

  17. Vignes, D., Mazelle, C., Réme, H., Acuña, M. H., Connerney, J. E. P., Lin, R. P., et al.: 2000, Geophys. Res. Lett. 27, 49.

Download references

Author information

Correspondence to R. A. Frahm.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Frahm, R.A., Sharber, J.R., Winningham, J.D. et al. Locations of Atmospheric Photoelectron Energy Peaks Within the Mars Environment. Space Sci Rev 126, 389–402 (2006). https://doi.org/10.1007/s11214-006-9119-5

Download citation

Keywords

  • Mars
  • photoelectrons