Space Science Reviews

, Volume 128, Issue 1–4, pp 301–337 | Cite as

Sesame – An Experiment of the Rosetta Lander Philae: Objectives and General Design

  • K. J. Seidensticker
  • D. Möhlmann
  • I. Apathy
  • W. Schmidt
  • K. Thiel
  • W. Arnold
  • H.-H. Fischer
  • M. Kretschmer
  • D. Madlener
  • A. Péter
  • R. Trautner
  • S. Schieke
Article

Abstract

SESAME is an instrument complex built in international co-operation and carried by the Rosetta lander Philae intended to land on comet 67P/Churyumov-Gerasimenko in 2014. The main goals of this instrument suite are to measure mechanical and electrical properties of the cometary surface and the shallow subsurface as well as of the particles emitted from the cometary surface. Most of the sensors are mounted within the six soles of the landing gear feet in order to provide good contact with or proximity to the cometary surface. The measuring principles, instrument designs, technical layout, operational concepts and the results from the first in-flight measurements are described. We conclude with comments on the consequences of the last minute change of the target comet and how to improve and to preserve the knowledge during the long-duration Rosetta mission.

Keywords

space missions Rosetta cometary nuclei cometary surface cometary particles in-situ science 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A'Hearn, M. F., Belton, M. J. S., Delamere, W. A., Kissel, J., Klaasen, K. P., McFadden, L. A., et al.: 2005, Science 310, 258.CrossRefADSGoogle Scholar
  2. A'Hearn, M. F.: 2004, Nature 429, 818.CrossRefADSGoogle Scholar
  3. Achenbach, J. D.: 1973, Wave Propagation in Elastic Solids, North-Holland Publishing Company, Amsterdam, London, p. 425.Google Scholar
  4. Belton, M. J. S., and A'Hearn, M. F.: 1999, Adv. Space Res. 24, 1167.CrossRefADSGoogle Scholar
  5. Benkhoff, J., and Huebner, W. F.: 1995, Icarus 114, 348.CrossRefADSGoogle Scholar
  6. Bibring, J.-P., Lamy, P., Langevin, Y., Soufflot, A., Berthé, M., Borg, J., et al.: Space Sci. Rev. this issue, doi: 10.1007/s11214-006-9135-5.Google Scholar
  7. Finzi, A. E., Magnani, P. G., Re, E., Espinasse, S., and Olivieri, A.: Space Sci. Rev. this issue, doi: 10.1007/s11214-006-9134-6.Google Scholar
  8. Fischer, H.-H.: 2002, ‘Software-Entwicklung für das SESAME-Experiment der Rosetta-Kometenmission und Untersuchungen zum RadFET-Dosimeter’, PhD thesis, Universität zu Köln, p. 141.Google Scholar
  9. Grard, R.: 1990a, Meas. Sci. Technol. 1, 295.CrossRefADSGoogle Scholar
  10. Grard, R.: 1990b, Meas. Sci. Technol. 1, 801.CrossRefADSGoogle Scholar
  11. Grün, E., Bar-Nun, A., Benkhoff, J., Bischoff, A., Düren, H., Hellmann, H., et al.: 1991a, In: R. L. Newburn Jr., M. Neugebauer, and J. Rahe (eds.), Comets in the Post-Halley Era, 1, Kluwer Academic Publishers, 277.ADSGoogle Scholar
  12. Grün, E., Kochan, H., and Seidensticker, K. J.: 1991b, Geophys. Res. Let. 18, 245.ADSGoogle Scholar
  13. Hesselbarth, P., Krankowsky, D., Lämmerzahl, P., Winkler, A., and Mauersberger, K.: 1991, Geophys. Res. Let. 18, 269.ADSCrossRefGoogle Scholar
  14. Holmes, C., Drinkwater, B. W., and Wilcox, P. D.: 2005, In: D. O. Thompson and D. E. Chimenti (eds.), Review of Progress in Quantitative Nondestructive Evaluation 24, 946.ADSGoogle Scholar
  15. Johnson, K. L.: 1987, Contact Mechanics, Cambridge University Press, p. 464.Google Scholar
  16. Kidger, M. R.: 2003, Astron. Astrophys. 408, 767.CrossRefADSGoogle Scholar
  17. Klingelhöfer, G., Brückner, J., d'Uston, C., Gellert, R., and Rieder, R.: Space Sci. Rev. this issue, doi: 10.1007/s11214-006-9137-3.Google Scholar
  18. Kochan, H., Feibig, W., Konopka, U., Kretschmer, M., Möhlmann, D., Seidensticker, K. J., et al.: 2000, Planet. Space Sci. 48, 385.CrossRefADSGoogle Scholar
  19. Kretschmer, M.: 2000, ‘Schallausbreitung in Kometen-relevantem Material’, PhD Thesis, Universität zu Köln, p. 128.Google Scholar
  20. Laakso, H., Grard, R., Janhunen, P., and Trotignon, J.-G.: 2002, Ann. Geophys. 20, 1.ADSCrossRefGoogle Scholar
  21. Lange, Y. V.: 1994, Nondestructive Testing and Evaluation 11, 177.CrossRefGoogle Scholar
  22. Möhlmann, D.: 1994, Planet. Space Sci. 42, 933.CrossRefADSGoogle Scholar
  23. Möhlmann, D.: 1995, Planet. Space Sci. 43, 327.CrossRefADSGoogle Scholar
  24. Prialnik, D., and Mekler, Y.: 1991, Astrophys. J. 366, 318.CrossRefADSGoogle Scholar
  25. Schieke, S.: 2004, ‘Beiträge zur Numerischen Simulation des Instrumentes CASSE der ESA-Mission Rosetta’, PhD thesis, Universität des Saarlandes, p. 134.Google Scholar
  26. Seidensticker, K. J., and Kochan, H.: 1992, Ann. Geophys. 10, 198.ADSGoogle Scholar
  27. Seidensticker, K. J., Fischer, H.-H., Madlener, D., Schieke, S., Thiel, K., Péter, A., et al.: 2004, In: L. Colangeli, E. M. Epifani, and P. Palumbo (eds.), The New Rosetta Targets — Observations, Simulations and Instrument Performances, Astrophysics and Space Science Library 311, Kluwer Academic Publishers, 297.ADSGoogle Scholar
  28. Seiferlin, K., Spohn, T., and Benkhoff, J.: 1995, Adv. Space Res. 15, 35.CrossRefADSGoogle Scholar
  29. Spohn, T., Seiferlin, K., Hagermann, A., Knollenberg, J., Ball, A. J., Banaszkiewicz, M., et al.: Space Sci. Rev. this issue, doi: 10.1007/s11214-006-9081-2.Google Scholar
  30. Tuzzolino, A. J., Economou, T. E., Clark, B. C., Tsou, P., Brownlee, D. E., Green, S. F., et al.: 2004, Science 304, 1776.CrossRefADSGoogle Scholar
  31. Virtanen, J.: 2006, ‘Theory and Praxis of the Permittivity Probe Quadrupole Measurements’, Diploma Thesis, University of Helsinki, p. 105.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • K. J. Seidensticker
    • 1
  • D. Möhlmann
    • 1
    • 2
  • I. Apathy
    • 3
  • W. Schmidt
    • 4
  • K. Thiel
    • 5
  • W. Arnold
    • 6
  • H.-H. Fischer
    • 5
  • M. Kretschmer
    • 1
    • 8
  • D. Madlener
    • 1
    • 9
  • A. Péter
    • 3
  • R. Trautner
    • 7
  • S. Schieke
    • 1
    • 10
  1. 1.DLRInstitute of Space SimulationKölnGermany
  2. 2.DLRInstitute of Planetary ResearchBerlinGermany
  3. 3.KFKI, Atomic Energy Research InstituteBudapestHungary
  4. 4.FMI, Space Research DivisionHelsinkiFinland
  5. 5.Dept. of Nuclear ChemistryUniversity of CologneKölnGermany
  6. 6.Fraunhofer-Institute for Non-Destructive Testing (IZFP)SaarbrückenGermany
  7. 7.RSSD/SCI-SB, ESA/ESTECNoordwijkThe Netherlands
  8. 8.Max-Planck Institute for Extraterrestrial PhysicsGarchingGermany
  9. 9.I. Institute of PhysicsUniversity of CologneKölnGermany
  10. 10.GE Inspection TechnologiesHürthGermany

Personalised recommendations