Space Science Reviews

, Volume 124, Issue 1–4, pp 183–202 | Cite as

Ring Current Dynamics

  • Ioannis A. DaglisEmail author


This chapter reviews the current understanding of ring current dynamics. The terrestrial ring current is an electric current flowing toroidally around the Earth, centered at the equatorial plane and at altitudes of ∼10,000 to 60,000 km. Enhancements in this current are responsible for global decreases in the Earth’s surface magnetic field, which have been used to define geomagnetic storms. Intense geospace magnetic storms have severe effects on technological systems, such as disturbances or even permanent damage of telecommunication and navigation satellites, telecommunication cables, and power grids. The main carriers of the ring current are positive ions, with energies from ∼1 keV to a few hundred keV, which are trapped by the geomagnetic field and undergo an azimuthal drift. The ring current is formed by the injection of ions originating in the solar wind and the terrestrial ionosphere into the inner magnetosphere. The injection process involves electric fields, associated with enhanced magnetospheric convection and/or magnetospheric substorms. The quiescent ring current is carried mainly by protons of predominantly solar wind origin, while active processes in geospace tend to increase the abundance (both absolute and relative) of O+ ions, which are of ionospheric origin. During intense geospace magnetic storms, the O+ abundance increases dramatically. This increase has been observed to occur concurrently with the rapid intensification of the ring current in the storm main phase and to result in O+ dominance around storm maximum. This compositional change can affect several dynamic processes, such as species-and energy-dependent charge-exchange and wave-particle scattering loss.


Magnetic storms ring current substorms magnetosphere-ionosphere coupling particle acceleration inner magnetosphere plasma sheet 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akasofu, S.-I., and Chapman, S.: 1961, ‘The ring current, geomagnetic disturbance, and the Van Allen radiation belts’. J. Geophys. Res. 66, 1321.zbMATHADSGoogle Scholar
  2. Axford, W. I.: 1970, ‘On the origin of radiation belt and auroral primary ions’. in: B. M. McCormac (ed.), Particles and Field in the Magnetosphere. Norwell, Mass.: D. Reidel, pp. 46–59.Google Scholar
  3. Baker, D. N., Pulkkinen, T. I., Toivanen, P., Hesse, M., and McPherron, R. L.: 1996, ‘A possible interpretation of cold ion beams in the Earth's tail lobes’. J. Geomagn. Geoelectr. 48, 699.Google Scholar
  4. Baumjohann, W.: 1993, ‘The near-Earth plasma sheet: An AMPTE/IRM perspective’. Space Sci. Rev. 64, 141.CrossRefADSGoogle Scholar
  5. Baumjohann, W., and Treumann, R. A.: 1996, Basic Space Plasma Physics. London: Imperial College Press.Google Scholar
  6. Chapman, S.: 1919, ‘An outline of a theory of magnetic storms’. Proc. Roy. Soc. London A95, 61.ADSGoogle Scholar
  7. Chapman, S.: 1962, ‘Earth storms: Retrospect and prospect’. J. Phys. Soc. Japan 17, Suppl. A-I, 6.ADSCrossRefGoogle Scholar
  8. Chapman, S., and Ferraro, V. C. A.: 1930, ‘A new theory of magnetic storms’. Nature 126, 129.ADSGoogle Scholar
  9. Chapman, S., and Ferraro, V. C. A.: 1931, ‘A new theory of magnetic storms’. Terr. Magn. Atmos. Electr. 36, 77.Google Scholar
  10. Chen, M. W., Lyons, L., and Shultz, M.: 1994, ‘Simulations of phase space distributions of storm time proton ring current’. J. Geophys. Res. 99, 5745.CrossRefADSGoogle Scholar
  11. Christofilos, N. C.: 1959, ‘The Argus Experiment’. J. Geophys. Res. 64, 869.ADSGoogle Scholar
  12. C:son Brandt, P., Mitchell, D. G., Demajistre, R., Roelof, E., Ohtani, S., Jahn, J.-M., et al.: 2003, in: A. S. Sharma, Y. Kamide., and G. S. Lakhina (eds.), Disturbances in Geospace: The Storm-Substorm Relationship, Geophys. Monogr. Ser., Vol. 142, doi 10.1029/142GM11. Washington, D. C.: AGU, pp. 103.Google Scholar
  13. C:son Brandt, P., Ohtani, S., Mitchell, D. G., Fok, M.-C., Roelof, E. C., and Demajistre, R.: 2002, ‘Global ENA observations of the storm main phase ring current: Implications for skewed electric fields in the inner magnetosphere’. Geophys. Res. Lett. 29, 1954, doi:10.1029/2002GL015160.CrossRefADSGoogle Scholar
  14. Daglis, I. A.: 1997a, ‘The role of magnetosphere-ionosphere coupling in magnetic storm dynamics’. in: B. T. Tsurutani, W. D. Gonzalez, Y. Kamide, and J. K. Arballo (eds.), Magnetic Storms, Geophys. Monogr. Ser., Vol. 98. Washington, D. C.: AGU, pp. 107.Google Scholar
  15. Daglis, I. A.: 1997b, ‘Terrestrial agents in the realm of space storms: Missions study oxygen ions’. Eos Trans. AGU 24, 245.CrossRefADSGoogle Scholar
  16. Daglis, I. A., and Axford, W. I.: 1996, ‘Fast ionospheric response to enhanced activity in geospace: Ion feeding of the inner magnetotail’. J. Geophys. Res. 101, 5047.CrossRefADSGoogle Scholar
  17. Daglis, I. A., Delcourt, D., Metallinou, F.-A., and Kamide, Y.: 1998, ‘Particle acceleration in the frame of the storm-substorm relation’. IEEE Trans. Plasma Science 32 (4), 1449.CrossRefADSGoogle Scholar
  18. Daglis, I. A., and Kamide, Y.: 2003, ‘The role of substorms in storm-time particle acceleration’. in: A. S. Sharma, Y. Kamide, and G. S. Lakhina (eds.), Disturbances in Geospace: The Storm-Substorm Relationship, Geophys. Monogr. Ser., Vol. 142, doi 10.1029/142GM11. Washington, D. C.: AGU, pp. 119–129.Google Scholar
  19. Daglis, I. A., Kamide, Y., Mouikis, C., Reeves, G. D., Sarris, E. T., Shiokawa, K., et al.: 2000, Adv. Space Res. 25 (12), 2369.CrossRefADSGoogle Scholar
  20. Daglis, I. A., Kasotakis, G., Sarris, E. T., Kamide, Y., Livi, S., and Wilken, B.: 1999a, ‘Variations of the ion composition during an intense magnetic storm and their consequences’. Phys. Chem. Earth 24, 229.Google Scholar
  21. Daglis, I. A., Kozyra, J. U., Kamide, Y., Vassiliadis, D., Sharma, A. S., Liemohn, M. W., et al.: 2003, J. Geophys. Res. 108, 1208, doi:10.102/ 2002JA009722.CrossRefGoogle Scholar
  22. Daglis, I. A., Livi, S., Sarris, E. T., and Wilken, B.: 1994, ‘Energy density of ionospheric and solar wind origin ions in the near-Earth magnetotail during substorms’. J. Geophys. Res. 99, 5691.CrossRefADSGoogle Scholar
  23. Daglis, I. A., Paschalidis, N. P., Sarris, E. T., Axford, W. I., Kremser, G., Wilken, B., et al.: 1991, in: J. R. Kan, T. A. Potemra, S. Kokubun, and T. Iijima (eds.): Magnetospheric Substorms, Geophys. Monogr. Ser., Vol. 64. Washington, D. C.: AGU, pp. 323–332.Google Scholar
  24. Daglis, I. A., Sarris, E. T., and Wilken, B.: 1993, ‘AMPTE/CCE CHEM observations of the ion population at geosynchronous altitudes’. Ann. Geophys. 11, 685.ADSGoogle Scholar
  25. Daglis, I. A., Thorne, R. M., Baumjohann, W., and Orsini, S.: 1999b, ‘The terrestrial ring current: Origin, formation, and decay’. Rev. Geophys. 37, 407.CrossRefADSGoogle Scholar
  26. De Michelis, P., Daglis, I. A., and Consolini, G.: 1997, ‘Reconstruction of the terrestrial ring current derived from AMPTE/CCE-CHEM’. J. Geophys. Res. 102, 14,103.Google Scholar
  27. Delcourt, D. C.: 2002, ‘Particle acceleration by inductive electric fields in the inner magnetosphere’. J. Atmos. Sol. Terr. Phys. 64, 551.CrossRefADSGoogle Scholar
  28. Dessler, A. J., and Hanson, W. B.: 1961, ‘Possible energy source for the aurora’. Astrophys. J. 134, 1024.CrossRefADSGoogle Scholar
  29. Dessler, A. J., and Parker, E. N.: 1959, ‘Hydromagnetic theory of geomagnetic storms’. J. Geophys. Res. 64, 2239.ADSGoogle Scholar
  30. Ebihara, Y., and Ejiri, M.: 2000, ‘Simulation study on fundamental properties of the storm-time ring current’. J. Geophys. Res. 105, 15,843.Google Scholar
  31. Ebihara, Y., and Fok, M.-C.: 2004, ‘Postmidnight storm-time enhancement of tens-of-keV proton flux’. J. Geophys. Res. 109, A12209, doi:10.1029/2004JA010523.CrossRefADSGoogle Scholar
  32. Feldstein, Y. I., Levitin, A. E., Golyshev, S. A., Dremukhina, L. A., Vestchezerova, U. B., Valchuk, T. E., et al.: 1994, Ann. Geophys. 12, 602.CrossRefADSGoogle Scholar
  33. Fok, M.-C., Moore, T. E., and Delcourt, D. C.: 1999, ‘Modeling of inner plasma sheet and ring current during substorms’. J. Geophys. Res. 104, 14,557.Google Scholar
  34. Fok, M.-C., Moore, T. E., and Greenspan, M. E.: 1996, ‘Ring current development during storm main phase’. J. Geophys. Res. 101, 15,311.Google Scholar
  35. Fok, M.-C., Moore, T. E., Kozyra, J. U., Ho, G. C., and Hamilton, D. C.: 1995, ‘Three-dimensional ring current decay model’. J. Geophys. Res. 100, 9619.CrossRefADSGoogle Scholar
  36. Fok, M.-C., Moore, T. E., Wilson, G. R., Perez, J. D., Zhang, X. X. C:son Brandt, P., et al.: 2003, D. G. Mitchell, E. C. Roelof, J. M. Jahn, C. J. Pollock, and R. A. Wolf: 2003, ‘Global ENA IMAGE simulations’. Space Sci. Rev. 109, 77.CrossRefADSGoogle Scholar
  37. Frank, L. A.: 1967, ‘On the extraterrestrial ring current during geomagnetic storms’. J. Geophys. Res. 72, 3753.ADSGoogle Scholar
  38. Geiss, J., Balsiger, H., Eberhardt, P., Walker, H. P., Weber, L., Young, D. T., et al.: 1978, and H. Rosenbauer: 1978, ‘Dynamics of magnetospheric ion composition as observed by the GEOS mass spectrometer’. Space Sci. Rev. 22, 537.CrossRefADSGoogle Scholar
  39. Gloeckler, G., and Hamilton, D. C.: 1987, ‘AMPTE ion composition results’. Phys. Scr. T18, 73.ADSGoogle Scholar
  40. Gonzalez, W. D., Tsurutani, B. T., Gonzalez, A. L. C., Smith, E. J., Tang, F., and Akasofu, S.-I.: 1989, ‘Solar wind-magnetosphere coupling during intense magnetic storms (1978-1979)’. J. Geophys. Res. 94, 8835.ADSGoogle Scholar
  41. Grafe, A.: 1999, ‘Are our ideas about Dst correct?’. Ann. Geophys. 17, 1.CrossRefADSGoogle Scholar
  42. Grande, M., Perry, C. H., Hall, D. S., Wilken, B., Livi, S., Søraas, F., et al.: 1992, Substorms 1, Eur. Space Agency Spec. Publ. SP-335, 485.Google Scholar
  43. Hamilton, D. C., Gloeckler, G., Ipavich, F. M., Stüdemann, W., Wilken, B., and Kremser, G.: 1988, ‘Ring current development during the great geomagnetic storm of February 1986’. J. Geophys. Res. 93, 14,343.Google Scholar
  44. Horne, R. B.: 1989, ‘Path-integrated growth of electrostatic waves: The generation of terrestrial myriametric radiation’. J. Geophys. Res. 94, 8895.ADSGoogle Scholar
  45. Iyemori, T., and Rao, D. R. K.: 1996, ‘Decay of the Dst field of geomagnetic disturbance after substorm onset and its implication to storm - substorm relation’. Ann. Geophys. 14, 608.CrossRefADSGoogle Scholar
  46. Jordanova, V. K., Farrugia, C. J., Thorne, R. M., Khazanov, G. V., Reeves, G. D., and Thomsen, M. F.: 2001, ‘Modeling ring current proton precipitation by electromagnetic ion cyclotron waves during the May 14-16, 1997 storm’. J. Geophys. Res. 106, 7.CrossRefADSGoogle Scholar
  47. Jordanova, V. K., Kozyra, J. U., and Nagy, A. F.: 1996, ‘Effects of heavy ions on the quasi-linear diffusion coefficients from resonant interactions with EMIC waves’. J. Geophys. Res. 101, 19,771.Google Scholar
  48. Jordanova, V. K., Kozyra, J. U., Nagy, A. F., and Khazanov, G. V.: 1997, ‘Kinetic model of the ring current–atmosphere interaction’. J. Geophys. Res. 102, 14,279.Google Scholar
  49. Kamide, Y.: 1992, ‘Is substorm occurrence a necessary condition for a magnetic storm?’. J. Geomagn. Geoelectr. 44, 109.Google Scholar
  50. Kamide, Y., Baumjohann, W., Daglis, I. A., Gonzalez, W. D., Grande, M., Joselyn, J. A., et al.: 1998 J. Geophys. Res. 103, 17,705.Google Scholar
  51. Kaye, S. M., Johnson, R. G., Sharp, R. D., and Shelley, E. G.: 1981, Geophys. Res. 86, 1335.ADSGoogle Scholar
  52. Kozyra, J. U., Jordanova, V. K., Horne, R. B., and Thorne, R. M.: 1997, in: Tsurutani, B. T., Gonzalez, W. D., Kamide, Y., and Arballo, J. K. (eds.), Magnetic Storms, Geophys. Monogr. Ser., vol. 98. Washington, D. C.: AGU, pp. 187.Google Scholar
  53. Krimigis, S. M., Gloeckler, G., McEntire, R. W., Potemra, T. A., Scarf, F. L., and Shelley, E. G.: 1985, ‘Magnetic storm of September 4, 1984: A synthesis of ring current spectra and energy densities measured with AMPTE/CCE’. Geophys. Res. Lett. 12, 329.ADSGoogle Scholar
  54. Liemohn, M. W., Kozyra, J. U., Jordanova, V. K., Khazanov, G. V., Thomsen, M. F., and Cayton, T. E.: 1999, ‘Analysis of early phase ring current recovery mechanisms during geomagnetic storms’. Geophys. Res. Lett. 26, 2845.CrossRefADSGoogle Scholar
  55. Liemohn, M. W., Kozyra, J. U., Thomsen, M. F., Roeder, J. L., Lu, G., Borovsky, J. E., et al.: 2001 J. Geophys. Res. 106, 10,883.Google Scholar
  56. Lui, A. T. Y., McEntire, R. W., and Krimigis, S. M.: 1987, ‘Evolution of the ring current during two geomagnetic storms’. J. Geophys. Res. 92, 7459.ADSGoogle Scholar
  57. Lyons, L. R., and Thorne, R. M.: 1972, ‘Parasitic pitch angle diffusion of radiation belt particles by ion cyclotron waves’. J. Geophys. Res. 77, 5608.ADSGoogle Scholar
  58. McPherron, R. L.: 1997, in: Tsurutani, B. T., Gonzalez, W. D., Kamide, Y., and Arballo, J. K. (eds.), Magnetic Storms, Geophys. Monogr. Ser., Vol. 98. Washington, D. C.: AGU, pp. 131.Google Scholar
  59. Metallinou, F.-A., Daglis, I. A., and Delcourt, D. C.: 2005, Eos Trans. AGU 86 (52), Fall Meet. Suppl. Abstract SA21A–0293.Google Scholar
  60. Mitchell, D. G., C:son Brandt, P., Roelof, E. C., Hamilton, D. C., Retterer, K. C., and Mende, S.: 2003, Space Sci. Rev. 109, 63–75.CrossRefADSGoogle Scholar
  61. Mitchell, D. G., Hsieh, K. C., Curtis, C. C., Hamilton, D. C., Voss, H. D., Roelof, E. C., et al.: 2001, and P. C:son Brandt: 2001, ‘Imaging two geomagnetic storms in energetic neutral atoms’. Geophys. Res. Lett. 28, 1151.CrossRefADSGoogle Scholar
  62. Möbius, E., Scholer, M., Klecker, B., Hovestadt, D., Gloeckler, G., and Ipavich, F. M.: 1987, in: Lui, A. T. Y. (ed.), Magnetotail Physics. Baltimore, Md.: Johns Hopkins Univ. Press, pp. 231–234.Google Scholar
  63. Moos, N. A. F.: 1910, Colaba magnetic data 1846 to 1905. Part I: Magnetic data and instruments. Part II: the phenomenon and its description. Bombay, India.Google Scholar
  64. Neugebauer, M., and Snyder, C.: 1962, ‘The mission of Mariner II: Preliminary observations’. Science 138, 1095.CrossRefADSGoogle Scholar
  65. Northrop, T. G.: 1963, The Adiabatic Motion of Charged Particles. New York: Wiley Interscience.zbMATHGoogle Scholar
  66. Nosé, M., Taguchi, S., Hosokawa, K., Christon, S. P., McEntire, R. W., Moore, T. E., et al.: 2005, J. Geophys. Res. 110, A09S24, doi:10.1029/2004JA010930.CrossRefGoogle Scholar
  67. Ohtani, S., C:son Brandt, P., Mitchell, D. G., Singer, H., M. Nosé, Reeves, G. D., and Mende, S. B.: 2005, ‘Storm-substorm relationship: Variations of the hydrogen and oxygen energetic neutral atom intensities during storm-time substorms’. J. Geophys. Res. 110, A07219, doi:10.1029/2004JA010954.Google Scholar
  68. Ohtani, S.-I., Nosé, M., Rostoker, G., Singer, H., Lui, A. T. Y., and Nakamura, M.: 2001, ‘Storm-substorm relationship: Contribution of the tail current to Dst’. J. Geophys. Res. 106, 21,199.Google Scholar
  69. Parker, E. N.: 1957, ‘Newtonian development of the dynamical properties of the ionised gases at low density’. Phys. Rev. 107, 924.zbMATHCrossRefADSMathSciNetGoogle Scholar
  70. Parker, E. N.: 1958, ‘Interaction of the solar wind with the geomagnetic field’. Phys. Fluids 1, 171.zbMATHCrossRefMathSciNetADSGoogle Scholar
  71. Peterson, W. K., Sharp, R. D., Shelley, E. G., Johnson, R. G., and Balsiger, H.: 1981, ‘Energetic ion composition of the plasma sheet’. J. Geophys. Res. 86, 761.ADSGoogle Scholar
  72. Sckopke, N.: 1966, ‘A general relation between the energy of trapped particles and the disturbance field over the Earth’. J. Geophys. Res. 71, 3125.Google Scholar
  73. Shelley, E. G., Johnson, R. G., and Sharp, R. D.: 1972, ‘Satellite observations of energetic heavy ions during a geomagnetic storm’. J. Geophys. Res. 77, 6104.ADSGoogle Scholar
  74. Shi, Y., Zesta, E., Lyons, L. R., Boudouridis, A., Yumoto, K., and Kitamura, K.: 2005, J. Geophys. Res. 110, A10205, doi:10.1029/2005JA011019.CrossRefADSGoogle Scholar
  75. Singer, S. F.: 1956, ‘Trapped orbits in the Earth's dipole field’. Bull. Am. Phys. Soc. Series II 1, 229 (A).Google Scholar
  76. Singer, S. F.: 1957, ‘A new model of magnetic storms and aurorae’. Eos Trans. AGU 38, 175.Google Scholar
  77. Siscoe, G. L., and Petschek, H. E.: 1997, ‘On storm weakening during substorm expansion phase’. Ann. Geophys. 15, 211.CrossRefADSGoogle Scholar
  78. Snyder, C. W., and Neugebauer, M.: 1964, ‘Interplanetary solar wind measurements by Mariner 2’. Space Research 4, 89.Google Scholar
  79. Søraas, F., Aarsnes, K., Lundblad, J. A., and Evans, D. S.: 1999, ‘Enhanced pitch angle scattering of protons at mid-latitudes during geomagnetic storms’. Phys. Chem. Earth 24, 287.Google Scholar
  80. Strangeway, R. J., and Johnson, R. G.: 1984, ‘Energetic ion mass composition as observed at near-geosynchronous and low altitudes during the storm period of February 21 and 22, 1979’. J. Geophys. Res. 89, 8919.ADSGoogle Scholar
  81. Stüdemann, W., Wilken, B., Kremser, G., Korth, A., and Fennell, J. F.: 1987, ‘The May 2-3, 1986 magnetic storm - First energetic ion composition observations with the MICS instrument on Viking’. Geophys. Res. Lett. 14, 455.ADSGoogle Scholar
  82. Sun, W., and Akasofu, S.-I: 2000, ‘On the formation of the storm-time ring current belt’. J. Geophys. Res. 105, 5411.CrossRefADSGoogle Scholar
  83. Sun, W., Xu, W.-Y., and Akasofu, S.-I: 1998, ‘Mathematical separation of directly driven and unloading components in the ionospheric equivalent currents during substorms’. J. Geophys. Res. 103, 11,695.Google Scholar
  84. Thorne, R. M., and Horne, R. B.: 1992, ‘The contribution of ion-cyclotron waves to electron heating and SAR-Arc excitation near the storm-time plasmapause’. Geophys. Res. Lett. 19, 419.ADSGoogle Scholar
  85. Turner, N. E., Baker, D. N., Pulkkinen, T. I., and McPherron, R. L.: 2000, ‘Evaluation of the tail current contribution to Dst’. J. Geophys. Res. 105, 5431.CrossRefADSGoogle Scholar
  86. Van Allen, J. A.: 1959, ‘The geomagnetically trapped corpuscular radiation’. J. Geophys. Res. 64, 1683.ADSCrossRefGoogle Scholar
  87. Van Allen, J. A., Ludwig, G. H., Ray, E. C., and C. E. McIlwain: 1958, ‘Observations of high intensity radiation by satellites 1958 Alpha and Gamma’. Jet Propul. 28, 588.Google Scholar
  88. Wygant, J., Rowland, D., Singer, H. J., Temerin, M., Mozer, F., and Hudson, M. K.: 1998, ‘Experimental evidence on the role of the large spatial electric field in creating the ring current’. J. Geophys. Res. 103, 29,527.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Institute for Space Applications and Remote SensingNational Observatory of AthensPenteliGreece

Personalised recommendations