Space Science Reviews

, Volume 125, Issue 1–4, pp 457–472

The Orbital Forcing of Climate Changes on Mars

Article

Abstract

Solar variability influences the climate of a planet by radiatively forcing changes over a certain timescale; orbital variations of a planet, which yield similar solar forcing modulations, can be studied within the same scientific context. It is known for Earth that obliquity changes have played a critical role in pacing glacial and interglacial eras. For Mars, such orbital changes have been far greater and have generated extreme variations in insolation. Signatures associated with the presence of water ice reservoirs at various positions across the surface of Mars during periods of different orbital configurations have been identified. For this reason, it has been proposed that Mars is currently evolving between ice ages. The advent of climate tools has given a theoretical frame to the study of orbitally-induced climate changes on Mars. These models have provided an explanation to many puzzling observations, which when put together have permitted reconstruction of almost the entire history of Mars in the last 10 million years. This paper proposes to give an overview of the scientific work dedicated to this topic.

Keywords

planetary sciences mars climate water cycle milankovitch cycle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bibring, J. P., Langevin, Y., Poulet, F., Gendrin, A., Gondet, B., Berthé M., Soufflot A., Drossart, P., Combes, M., Bellucci, G., Moroz, V., Mangold, N., Schmitt, B., and the OMEGA team: 2004, ‘Perennial water ice identied in the south polar cap of Mars’, Nature 428, 627–630.CrossRefADSGoogle Scholar
  2. Bibring J. P., Langevin, Y., Gendrin, A., Gondet, B., Poulet, F., Berthé, M., Soufflot A., Arvidson, R., Mangold, N., Mustard, J., Drossart, P., and the OMEGA team: 2005, ‘Mars Surface diversity as revealed by the OMEGA/Mars express observations’, Science 307, 1576–1581.CrossRefADSGoogle Scholar
  3. Böttger, H. M., Lewis, S. R., Read, P. L., and Forget, F.: 2005, ‘The effects of the Martian regolith on GCM water cycle simulations’, Icarus 177, 174–189.CrossRefADSGoogle Scholar
  4. Byrne S., and Ingersoll, A. P.: 2003, ‘A sublimation model for Martian south polar ice features’, Science 299, 1051–1053.CrossRefADSGoogle Scholar
  5. Clancy, R. T., Grossman, A. W., Wolff, M. J., James, P. B., Rudy D. J., Billawala, Y. N., Sandor, B. J., Lee, S. W., and Muhleman D. O.: 1996, ‘Water vapor saturation at low latitudes around aphelion: A key to Mars climate?’, Icarus 122, 36–62.CrossRefADSGoogle Scholar
  6. Feldman, W. C., et al.: 2004, ‘The global distribution of near-surface hydrogen on Mars’, J. Geophys. Res. 109, doi:10.1029/2003JE00216.Google Scholar
  7. Forget, F., Haberle, R. M., Montmessin, F., Levrard, B., and Head, J. W.: 2006, ‘Formation of glaciers on Mars by atmospheric precipitation at high obliquity’, Science 311, 368–371.CrossRefADSGoogle Scholar
  8. Haberle, R. M., McKay C. P., Schaeffer, J., Joshi, M., Cabrol, N. A., and Grin, E. A.: 2000, ‘Meteorological control on the formation of Martian Paleolakes’, In Lunar and Planetary Institute Abstracts, 31st Annual Lunar and Planetary Science Conference, Houston, Texas, abstract no. 1509.Google Scholar
  9. Head, J. W., and Marchant, D. R.: 2003, ‘Cold-based mountain glaciers on Mars: Western Arsia mons’, Geology 31, 641–644.CrossRefADSGoogle Scholar
  10. Head, J. W., Mustard, J. F., Kreslavsky, M. A., Milliken, R. E., and Marchant, D. R.: 2003, ‘Recent ice age son Mars’, Nature 426, 797–802.CrossRefADSGoogle Scholar
  11. Head, J. W., Neukum, G., Jaumann, R., Hiesinger, H., Hauber, E., Carr, M., Masson, P., Foing, B., Hoffmann, H., Kreslavsky, M., Werner, S., Milkovich, S., van Gasselt, S., and the HRSC team: 2005, ‘Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars’, Nature 434, 346–351.CrossRefADSGoogle Scholar
  12. Hecht, M. H.: 2003, ‘What is the time scale for orbital forcing of the Martian water cycle?’, In International Conference on Mars Abstracts, Sixth International Conference on Mars, Pasadena, California, abstract no. 3285.Google Scholar
  13. Herkenhoff, K. E., and Plaut, J. J.: 2000, ‘Surface ages and resurfacing rates of the polar layered deposits on Mars’, Icarus 144, 243–253.CrossRefADSGoogle Scholar
  14. Houben, H., Haberle, R. M., Young, R. E., and Zent, A. P.: 1997, ‘Modeling the Martian seasonal water cycle’, J. Geophys. Res. 102, 9069–9083.CrossRefADSGoogle Scholar
  15. Jakosky, B. M., and Carr, M. H.: 1985, ‘Possible precipitation of ice at low latitudes of Mars during periods of high obliquity’, Nature 315, 559.CrossRefADSGoogle Scholar
  16. Kasting, J. F.: 1997 ‘Warming early Earth and Mars’, Science 276, 1213.CrossRefGoogle Scholar
  17. Kieffer, H. H., Martin, T. Z., Chase, S. C., Miner, E. D., and Palluconi, F. D.: 1976, ‘Martian north pole summer temperatures – Dirty water ice’, Science 194, 1341–1344.CrossRefADSGoogle Scholar
  18. Laskar, J., and Robutel, P.: 1993, ‘The chaotic obliquity of the planets’, Nature 361, 608–612.CrossRefADSGoogle Scholar
  19. Laskar, J., Levrard, B., and Mustard, J. F.: 2002, ‘Orbital forcing of the martian polar layered deposits’, Nature 419, 375–377.CrossRefADSGoogle Scholar
  20. Laskar, J., Correia, A. C. M., Gastineau, M., Joutel, F., Levrard, B., and Robutel, P.: 2004, ‘Long term evolution and chaotic diffusion of the insolation quantities of Mars’, Icarus 170, 343–364.CrossRefADSGoogle Scholar
  21. Levrard, B., Forget, F., Montmessin, F., and Laskar, J.: 2004. ‘Recent ice-rich deposits formed at high latitudes on Mars by sublimation of unstable equatorial ice during low obliquity’, Nature, 431, 1072–1075.CrossRefADSGoogle Scholar
  22. Malin, M. C., and Edgett, K. S.: 2000, ‘Evidence for Recent Groundwater Seepage and Surface Runoff on Mars’, Science 288, 2330–2335.CrossRefADSGoogle Scholar
  23. Mangold, N., Quantin, C., Ansan, V., Delacourt, C., and Allemand, P.: 2004, ‘Evidence for Precipitation on Mars from Dendritic Valleys in the Valles Marineris area’, Science 305, 78–81.CrossRefADSGoogle Scholar
  24. Mellon, M. T., and Feldman, W. C.: 2005, ‘Martian Ground Ice and Equilibrium With Atmospheric Diffusion’, AGU Fall Meeting Abstract.Google Scholar
  25. Mellon, M. T., Feldman, W. C., and Prettyman, T. H.: 2004, ‘The presence and stability of ground ice in the southern hemisphere of Mars’, Icarus 169, 324–340.CrossRefADSGoogle Scholar
  26. Milkovich, S. M., and Head, J. W.: 2005, ‘North polar cap of Mars: Polar layered deposit characterization and identification of a fundamental climate signal’, J. Geophys. Res. 110, E01005, doi:10.1029/2004JE002349.CrossRefGoogle Scholar
  27. Mischna, M. A., Richardson, M. I., Wilson, R. J., and McCleese, D. J.: 2003, ‘On the orbital forcing of Martian water and CO2 cycles: A general circulation model study with simplified volatile schemes’, J. Geophys. Res. 108, 5062, doi:10.1029/2003JE002051.CrossRefGoogle Scholar
  28. Montmessin, F., Haberle, R. M., and Forget, F.: 2004, ‘Making water ice permanent at the South pole 25,000 years ago’, In Lunar Planet. Sci. Conference Abstracts, 35th Lunar and Planetary Science Conference, League City, Texas, abstract no. 1312.Google Scholar
  29. Mustard, J. F., et al.: 2001, ‘Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice’, Nature 412, 411–414.CrossRefADSGoogle Scholar
  30. Neukum, G., et al.: 2004, ‘Recent and episodic volcanic and glacial activity on Mars revealed by the high resolution stereo camera’, Nature 432, 971–979.CrossRefADSGoogle Scholar
  31. Plaut, J. J., Kahn, R., Guinness, E. A., and Arvidson, R. E.: 1988, ‘Accumulation of sedimentary debris in the south polar region of Mars and implications for climate history’, Icarus 76, 357–377.CrossRefADSGoogle Scholar
  32. Pollack, J. B., Kasting, J. F., Richardson, S. M., and Poliakoff, K.: 1987, ‘The case for a wet, warm climate on early Mars’, Icarus 71, 203–224.CrossRefADSGoogle Scholar
  33. Richardson, M. I., and Wilson, R. J.: 2002a, ‘Investigation of the nature and stability of the Martian seasonal water cycle with a general circulation model’, J. Geophys. Res. 107, 5031, doi:10.1029/2001JE001536.CrossRefGoogle Scholar
  34. Richardson, M. I., and Wilson, R. J.: 2002b, ‘A topographically forced asymmetry in the Martian circulation and climate’, Nature 416, 298–301.CrossRefADSGoogle Scholar
  35. Sagan, C., and Chyba, C.: 1997, ‘The early faint sun paradox: Organic shielding of ultraviolet-labile greenhouse gases’, Science 276, 1217–1221.CrossRefADSGoogle Scholar
  36. Smith, M. D.: 2002, ‘The annual cycle of water vapor on Mars as observed by the thermal emission spectrometer’, J. Geophys. Res. 107, doi:10.1029/2001JE001522.Google Scholar
  37. Smith, M. D.: 2004, ‘Annual variability in TES atmospheric observations of Mars during 1999– 2003’, Icarus 167, 148–165.CrossRefADSGoogle Scholar
  38. Titus, T. N., and Kieffer, H. H.: 2003, ‘Temporal and spatial distribution of CO2 snow and ice’, International Conference on Mars Abstracts, Sixth International Conference on Mars, Pasadena, California, abstract no. 3273Google Scholar
  39. Titus, T. N., Kieffer, H. H., and Christensen, P. R.: 2003, ‘Exposed water ice discovered near the south pole of Mars’, Science 299, 1048–1051.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Service d’Aéronomie du CNRSRéduit de VerrièresVerrières le BuissonFrance

Personalised recommendations