Space Science Reviews

, Volume 125, Issue 1–4, pp 417–430 | Cite as

Early Data from Aura and Continuity from Uars and Toms

  • E. Hilsenrath
  • M. R. Schoeberl
  • A. R. Douglass
  • P. K. Bhartia
  • J. Barnett
  • R. Beer
  • J. Waters
  • M. Gunson
  • L. Froidevaux
  • J. Gille
  • P. F. Levelt
Article

Abstract

Aura, the last of the large EOS observatories, was launched on July~15, 2004. Aura is designed to make comprehensive stratospheric and tropospheric composition measurements from its four instruments, HIRDLS, MLS, OMI and TES. These four instruments work in synergy to provide data on ozone trends, air quality and climate change. The instruments observe in the nadir and limb and provide the best horizontal and vertical resolution ever achieved from space. After over one year in orbit the instruments are nearly operational and providing data to the scientific community. We summarize the mission, instruments, and initial results and give examples of how Aura will provide continuity to earlier chemistry missions.

Keywords

satellite observations atmospheric composition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J., Russell III, J. M., Solomon, S., and Deaver, L. E.: 2000, ‘Halogen Occultation Experiment confirmation of stratospheric chlorine decreases in accordance with the montreal protocol’, J. Geophys. Res. 105, 4483–4490.CrossRefADSGoogle Scholar
  2. Beer, R., Glavich, T. A., and Rider, D. M.: 2001, ‘Tropospheric emission spectrometer for the Earth Observing Systems Aura satellite’, Appl. Opt. 40, 2356–2367.ADSGoogle Scholar
  3. Gettelman, A., Holton, J., and Rosenlof, K.: 1997, ‘Mass fluxes of O3, CH4, N2O and CF2Cl2 in the lower stratosphere calculated from observational data’, J. Geophys. Res. 102, 19,149–19,159.CrossRefADSGoogle Scholar
  4. Gille, J., Barnett, J., Whitney, J., Dials, M., Woodard, D., Lambert, A., and Mankin, W.: 2003, ‘The High Resolution Dynamics Limb Sounder (HIRDLS) Experiment on Aura’, Proc. SPIE 5152, 162–171.CrossRefADSGoogle Scholar
  5. Glavich, T. and Beer, R.: 1991, ‘Tropospheric Emission Spectrometer for the Earth Observing System’, in: Infrared Technology XVII, Proc. SPIE 1540, 148–159.Google Scholar
  6. Guicherit, R. and Roemer, M.: 2000, ‘Tropospheric ozone trends’, Chemosphere Global Change Sci. 2, 167–183.CrossRefGoogle Scholar
  7. Hauglustaine, D., et al.: 1998, ‘MOZART, a global chemical transport model for ozone and related chemical tracers 2. Model results and evaluation’, J. Geophys. Res. 103, 28,291–28,335.CrossRefADSGoogle Scholar
  8. Houghton, J., et al.: 2001, ‘Climate Change 2001: The Scientific Basis, IPCC, Intergovermental Panel on Climate Change’, Cambridge University Press, Cambridge, England, 944 pp.Google Scholar
  9. IPCC: 2005, ‘Safeguarding the ozone layer and the global climate system: Issues related to the hydrofluorocarbons and perfluorocarbons, Summary for Policy Makers’, IPCC/TEAP Special Report, WMO/UNEP.Google Scholar
  10. Levelt, P. F., Hilsenrath, E., Leppelmeier, G. W., van den Oord, G. H. J., Bhartia, P. K., Tamminen, J., de Haan, J. F., Veefkind, J. P., and Leppelmeier, G. W.: 2006, ‘Science objectives of the ozone monitoring instrument’, IEEE Transactions on Geoscience and Remote Sensing, 44, pp. 1199–1208, May 2006.Google Scholar
  11. Logan, J. A.: 1985, ‘Tropospheric ozone — seasonal behavior, trends, and anthropogenic influence’, J. Geophys. Res. 90, 10,463–10,482.ADSCrossRefGoogle Scholar
  12. Mote, P., et al.: 1996, ‘An atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor’, J. Geophys. Res. 101, 3989–4006.CrossRefADSGoogle Scholar
  13. Newman, P. A., Gleason, J. F., McPeters, R. D., and Stolarski, R. S.: 1997, ‘Anomalously low ozone over the Arctic’, Geophys. Res. Lett. 24, 2689–2692.CrossRefADSGoogle Scholar
  14. Read, W., et al.: 1995, ‘Upper tropospheric water vapor from UARS MLS’, Bull. Amer. Met. Soc. 76, 2381–2389.CrossRefADSGoogle Scholar
  15. Sandor, B. J., et al.: 1998, ‘Seasonal behavior of tropical to mid-latitude upper tropospheric water vapor from UARS MLS’, J. Geophys. Res. 103, 25,935–25,947.ADSGoogle Scholar
  16. Schoeberl, M. R., et al.: 2004, ‘Earth Observing Systems Benefit Atmospheric Research’, AGU EOS 85, 177–178.ADSGoogle Scholar
  17. Solomon, S.: 1999, ‘Stratospheric ozone depletion: A review of concepts and history’, Rev. Geophys. 37, 275–316.CrossRefADSGoogle Scholar
  18. Waters, J. W., et al.: 1993, ‘Stratospheric ClO and Ozone from the Microwave Limb Sounder on the Upper Atmosphere Research Satellite’, Nature 362, 597–602.CrossRefADSGoogle Scholar
  19. Waters, J. W., et al.: 1999, ‘The UARS and EOS microwave limb sounder (MLS) Experiments’, J. Atmos. Sci. 56, 194–218.CrossRefADSGoogle Scholar
  20. Waters, J. W., et al.: 2005, ‘The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura Satellite’, IEEE, submitted to Transactions on Geoscience and Remote Sensing.Google Scholar
  21. WMO (World Meteorological Organization): 2002, Scientific Assessment of Ozone Depletion: 2002, Global Ozone Research and Monitoring Project–Report No. 47, WMO/UNEP, Geneva, 498 pp.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • E. Hilsenrath
    • 1
  • M. R. Schoeberl
    • 1
  • A. R. Douglass
    • 1
  • P. K. Bhartia
    • 1
  • J. Barnett
    • 2
  • R. Beer
    • 3
  • J. Waters
    • 3
  • M. Gunson
    • 3
  • L. Froidevaux
    • 3
  • J. Gille
    • 4
  • P. F. Levelt
    • 5
  1. 1.NASA Goddard Space Flight CenterGreenbeltUSA
  2. 2.Oxford UniversityOxfordUK
  3. 3.Jet Propulsion LaboratoryPasadenaUSA
  4. 4.University of ColoradoBoulderUSA
  5. 5.Royal Netherlands Meteorological InstituteDe BiltThe Netherlands

Personalised recommendations