Space Science Reviews

, Volume 125, Issue 1–4, pp 345–356

The Response of the Middle Atmosphere to Solar Cycle Forcing in the Hamburg Model of the Neutral and Ionized Atmosphere

Article

Abstract

This paper studies the response of the middle atmosphere to the 11-year solar cycle. The study is based on numerical simulations with the Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA), a chemistry climate model that resolves the atmosphere from the Earth’s surface up to about 250 km. Results presented here are obtained in two multi-year time-slice runs for solar maximum and minimum conditions, respectively. The magnitude of the simulated annual and zonal mean stratospheric response in temperature and ozone corresponds well to observations. The dynamical model response is studied for northern hemisphere winter. Here, the zonal mean wind change differs substantially from observations. The statistical significance of the model’s dynamical response is, however, poor for most regions of the atmosphere. Finally, we discuss several issues that render the evaluation of model results with available analyses of observational data of the stratosphere and mesosphere difficult. This includes the possibility that the atmospheric response to solar variability may depend strongly on longitude.

Keywords

middle atmosphere solar cycle chemistry climate modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banks, P. M., and Kockarts, G.: 1973, Aeronomy, Part B, New York, Academic Press.Google Scholar
  2. Beres, J. H., Garcia, R. R., Boville, B. A., and Sassi, F.: 2005, ‘Implementation of a gravity wave source spectrum parameterization dependent on the properties of convection in the Whole Atmosphere Community Climate model (WACCM)’, J. Geophys. Res. 110, doi:10.1029/2004JD005504.Google Scholar
  3. Chanin, M.-L.: 2006, ‘Signature of the 11-year cycle in the upper atmosphere’, Space Sci. Rev. !!, this volume, doi: 10.1007/s11214-006-9062-5.Google Scholar
  4. Crooks, S. A., and Gray, L. J.: 2005, ‘Characterization of the 11-year solar signal using a multiple regression analysis of the ERA-40 dataset’, J. Climate 18, 996–1015.CrossRefADSGoogle Scholar
  5. Fomichev, V. I., and Blanchet, J.-P.: 1995, ‘Development of the New CCC/GCM longwave radiation model for extension into the middle atmosphere’, Atmos. Ocean 33, 513–531.Google Scholar
  6. Fomichev, V. I., Blanchet, J.-P., and Turner, D. S.: 1998, ‘Matrix parameterization of the 15 μm CO2 band cooling in the middle and upper atmosphere for variable CO2 concentration’, J. Geophys. Res. 103, 11,505–11,528. N. A., and Shepherd, T. GCrossRefGoogle Scholar
  7. Fomichev, V. I., Ward, W. E., Beagley, S. R., McLandress, C., McConnell, J. C., McFarlane, N. A., Shepherd, T. G.: 2002, ‘The extended Canadian middle atmosphere model: Zonal mean climatology and physical parameterizations’, J. Geophys. Res. 107, doi:10.1029/2001JD000479.Google Scholar
  8. Froehlich, C.: 2004, ‘Solar irradiance variability’, in J. M. Pap and P. Fox (eds.), Solar Variability and its Effects on Climate, No. 141 in Geophys. Monogr. Ser., Washington, DC: AGU, pp. 97–110.Google Scholar
  9. Garcia, R. R., and Sassi, F.: 1999, ‘Modulation of the mesospheric semiannual oscillation by the quasi-biennial oscillation’, Earth Planets Space 51, 563–569.ADSGoogle Scholar
  10. Giorgetta, M. A., Manzini, E., and Roeckner, E.: 2002, ‘Forcing of the quasi-biennial oscillation from a broad spectrum of atmospheric waves’, Geophys. Res. Lett. 29, doi:10.1029/2002GL014756.Google Scholar
  11. Haigh, J. D.: 1994, ‘The role of stratospheric ozone in modulating the solar radiative forcing of climate’, Nature 370, 544–546.CrossRefADSGoogle Scholar
  12. Haigh, J. D.: 1999, ‘A GCM study of climate change in response to the 11-year solar cycle’, Quart. J. Roy. Meteor. Soc. 125, 871–892.CrossRefADSGoogle Scholar
  13. Hampson, J., Keckhut, P., Hauchecorne, A., and Chanin, M.-L.: 2005, ‘The effect of the 11-year solar-cycle on the temperature in the upper-stratosphere and mesosphere: Part III investigations of zonal asymmetry’, submitted to J. Atm. Sol. Terr. Phys. Google Scholar
  14. Hines, C. O.: 1997a, ‘Doppler-spread parameterization of gravity wave momentum deposition in the middle atmosphere. Part 1: Basic formulation’, J. Atm. Sol. Terr. Phys. 59, 371–386.CrossRefADSGoogle Scholar
  15. Hines, C. O.: 1997b, ‘Doppler-spread parameterization of gravity wave momentum deposition in the middle atmosphere. Part 2: Broad and quasi monochromatic spectra, and implementation’, J. Atm. Sol. Terr. Phys. 59, 387–400.CrossRefADSGoogle Scholar
  16. Hong, S. S., and Lindzen, R. S.: 1976, ‘Solar semidiurnal tide in the thermosphere’. J. Atm. Sc. 33, 135–153.CrossRefADSGoogle Scholar
  17. Hood, L.: 2004, ‘Effects of solar UV variability on the stratosphere’, in J. M. Pap and P. Fox (eds.), Solar Variability and its Effects on Climate, No. 141 in Geophys. Monogr. Ser., Washington, DC: AGU, pp. 283–304.Google Scholar
  18. Keckhut, P., Cagnazzo, C., Chanin, M.-L., Claud C., and Hauchecorne A.: 2005, ‘Midlatitude long-term variability of the atmosphere: Trends and cyclic and episodic changes’, J. Atm. Sol. Terr. Phys. 67, 940–947.CrossRefADSGoogle Scholar
  19. Kinnison, D. E., Brasseur, G. P., Walters, S., Garcia, R. R., Sassi, F., Boville, B., Marsh, D., Harvey, L., Randall, C., Emmons, L., and Pan, R. W. L.: 2005, ‘Sensitivity of Chemical Tracers to Meteorological Parameters in the MOZART-3 Chemical Transport Model’, submitted to J. Geophys. Res. Google Scholar
  20. Kodera, K., and Kuroda, Y.: 2002, ‘Dynamical response to the solar cycle’, J. Geophys. Res. 107, doi:10.1029/2002JD002224.Google Scholar
  21. Labitzke, K.: 2003, ‘The global signal of the 11-year sunspot cycle in the atmosphere: When do we need the QBO?’, Meteorol. Z. 12, 209–216.CrossRefGoogle Scholar
  22. Labitzke, K., and van Loon, H.: 1988, ‘Associations between the 11-year solar cycle, the QBO and the atmosphere, part I: The troposphere and the stratosphere in the northern hemisphere winter’, J. Atmos. Terr. Phys. 64, 203–210.ADSGoogle Scholar
  23. Lean, J.: 2000, ‘Evolution of the Sun's spectral irradiance since the Maunder minimum’, Geophys. Res. Lett. 27, 2425–2428.CrossRefADSGoogle Scholar
  24. Lean, J., Rottman, J., Kyle, G. J., Woods, H. L., Hickey, T. N., and Pugga, J. R.: 1997, ‘Detection and parameterization of variations in solar mid and near-ultraviolet radiation (200–400 nm)’, J. Geophys. Res. 102, 29,939–29,956.CrossRefGoogle Scholar
  25. Lee, H., and Smith, A. K.: 2003, ‘Simulation of the combined effects of solar cycle, quasi-biennial oscillation, and volcanic forcing on stratospheric ozone changes in recent decades’, J. Geophys. Res. 108, doi:10.1029/2001JD001503.Google Scholar
  26. Manzini, E., McFarlane, N. A., and McLandress, C.: 1997, ‘Impact of the Doppler spread parameterization on the simulation of the middle atmosphere circulation using the MA/ECHAM4 general circulation model’, J. Geophys. Res. 102, 25,751–25,762.CrossRefGoogle Scholar
  27. Matthes, K., Kodera, K., Haigh, J. D., Shindell, D. T., Shibata K., Langematz, U., and Rozanov, E.: 2003, ‘GRIPS solar experiments intercomparison project: Initial results’, Papers in Meteorol. Geophys. 54, 71–90.CrossRefGoogle Scholar
  28. Matthes, K., Langematz, U., Gray, L. J., Kodera, K., and Labitzke, K.: 2004, ‘Improved 11-year solar signal in the Freie Universität Berlin Climate Middle Atmosphere Model (FUB-CMAM)’, J. Geophys. Res. 109, doi:10.1029/2003JD004012.Google Scholar
  29. McCormack, J. P., and Hood, L.: 1996, ‘Apparent solar cycle variations of upper tratospheric ozone and temperature: Latitude and seasonal dependence’, J. Geophys. Res. 101, 20,933–20,944.CrossRefGoogle Scholar
  30. Richards, P. G., Fennelly, J. A., and Torr, D. G.: 1994, ‘A solar EUV flux model for aeronomic calculations’, J. Geophys. Res. 99, 8981–8992. (Correction, JGR, 99, 13283, 1994)CrossRefADSGoogle Scholar
  31. Roeckner, E., Bäuml, G., Bonaventura, L., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kirchner, I., Kornblueh, L., Manzini, E., Rhodin, A., Schlese, U., Schulzweida, U., and T. A.: 2003, ‘The atmospheric general circulation model ECHAM 5. Part I: Model description’, Technical Report 349, MPI for Meteorology, Hamburg, Germany.Google Scholar
  32. Roeckner, E., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kornblueh, L., Manzini, E., Schlese, U., and Schulzweida, U.: 2006, ‘Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model’, J. Climate, in press.Google Scholar
  33. Rottman, G.: 2000, ‘Variations of solar ultraviolet irradiance observed by the UARS SOLSTICE – 1991 to 1999’, Space Sc. Rev. 94, 83–91.CrossRefADSGoogle Scholar
  34. Rozanov, E. V., Schlesinger, M. E., Egorova, T. A., Li, B., Andronova, N., and Zubov, V. A.: 2004, ‘Atmospheric response to the observed increase of solar UV radiation from solar minimum to solar maximum simulated by the University of Illinois at Urbana-Champaign climate-chemistry model’, J. Geophys. Res. 109, doi:10.1029/2003JD003796.Google Scholar
  35. Salby, M., and Callaghan, P.: 2000, ‘Connection between the solar cycle and the QBO: The missing link’, J. Climate 13, 2652–2662.CrossRefADSGoogle Scholar
  36. Scaife, A., Austin, J., Butchart, N., Pawson, S., Keil, M., Nash, J., and James, I. N.: 2000, ‘Seasonal and interannual variability of the stratosphere diagnosed from UKMO TOVS analyses’, Quart. J. Roy. Meteor. Soc. 126, 2585–2604.CrossRefADSGoogle Scholar
  37. Schmidt, H., Brasseur, G. P., Charron, M., Manzini, E., Giorgetta, M. A., Fomichev, V. I., Kinnison, D., Marsh, D., and Walters, S.: 2006, ‘The HAMMONIA chemistry climate model: Sensitivity of the mesopause region to the 11-year solar cycle and CO2 doubling’, J. Climate 19, 3903–3931.CrossRefGoogle Scholar
  38. Shibata, K., and Kodera, K.: 2005, ‘Simulation of radiative and dynamical responses of the middle atmosphere to the 11-year solar cycle’, J. Atm. Sol. Terr. Phys. 67, 125–143.CrossRefADSGoogle Scholar
  39. Shindell, D., Rind, D., Balachandran, N., Lean, J., and Lonergan, J.: 1999, ‘Solar cycle variability, ozone, and climate’, Science 284, 305–308.CrossRefADSGoogle Scholar
  40. Simmons, A. J., et al.: 1989, ‘The ECMWF medium-range prediction model: Development of the numerical formulations and the impact of increased resolution’, Meteorol. Atmos. Phys. 40, 28–60.CrossRefGoogle Scholar
  41. Siskind, D. E.: 2000, ‘On the coupling between middle and upper atmospheric odd nitrogen’, in D. E. Siskind, S. D. Eckermann, and M. E. Summers (eds.), Atmospheric Science Across the Stratopause, No. 123 in Geophys. Monogr. Ser., Washington, DC: AGU, pp. 101–116.Google Scholar
  42. Soukharev, B., and Hood, L.: 2005, ‘The 11-year solar cycle variation of stratospheric ozone as obtained from the SBUV and HALOE ozone profile measurements’, Oral presentation IAGA2005-A-01264, at the IAGA assembly, Toulouse.Google Scholar
  43. Tourpali, K., Schuurmans, C. J. E., van Dorland, R., Steil, B., and Brühl, C.: 2003, ‘Stratospheric and tropospheric response to enhanced solar UV-radiation: A model study’, Geophys. Res. Lett. 30, doi:10.1029/2002GL016650.Google Scholar
  44. Wang, H. J., Cunnold, D. M., and Bao, X.: 1996, ‘A critical analysis of Stratospheric Aerosol and Gas Experiment ozone trends’, J. Geophys. Res. 101, 12,495–12,514.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Max Planck Institute for MeteorologyHamburgGermany
  2. 2.National Center for Atmospheric ResearchBoulderUSA

Personalised recommendations