Space Science Reviews

, Volume 125, Issue 1–4, pp 305–317 | Cite as

Multidecadal Signal of Solar Variability in the Upper Troposphere During the 20th Century

Article

Abstract

Studies based on data from the past 25–45 years show that irradiance changes related to the 11-yr solar cycle affect the circulation of the upper troposphere in the subtropics and midlatitudes. The signal has been interpreted as a northward displacement of the subtropical jet and the Ferrel cell with increasing solar irradiance. In model studies on the 11-yr solar signal this could be related to a weakening and at the same time broadening of the Hadley circulation initiated by stratospheric ozone anomalies. Other studies, focusing on the direct thermal effect at the Earth’s surface on multidecadal scales, suggest a strengthening of the Hadley circulation induced by an increased equator-to-pole temperature gradient. In this paper we analyse the solar signal in the upper troposphere since 1922, using statistical reconstructions based on historical upper-air data. This allows us to address the multidecadal variability of solar irradiance, which was supposedly large in the first part of the 20th century. Using a simple regression model we find a consistent signal on the 11-yr time scale which fits well with studies based on later data. We also find a significant multidecadal signal that is similar to the 11-yr signal, but somewhat stronger. We interpret this signal as a poleward shift of the subtropical jet and the Ferrel cell. Comparing the magnitude of the two signals could provide important information on the feedback mechanisms involved in the solar climate relationship with respect to the Hadley and Ferrel circulations. However, in view of the uncertainty in the solar irradiance reconstructions, such interpretations are not currently possible.

Keywords

solar variability Hadley cell Ferrel cell multidecadal variability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan, R. J. and Ansell, T. J.: 2006, ‘A new globally complete monthly historical gridded mean sea level pressure data set (HadSLP2): 1850–2004’, J. Climate, in press.Google Scholar
  2. Balachandran, N. K., Rind, D., Lonergan, P., and Shindell, D. T.: 1999, ‘Effects of solar cycle variability on the lower stratosphere and the troposphere’, J. Geophys. Res. 104, 27,321–27,339.CrossRefADSGoogle Scholar
  3. Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M. N., Showers, W., Hoffmann S., Lotti-Bond R., Hajdas, I., and Bonani, G.: 2001, ‘Persistent solar influence on north Atlantic climate during the Holocene’, Science 294, 2130–2136.CrossRefADSGoogle Scholar
  4. Brönnimann, S.: 2003, ‘A historical upper-air data set for the 1939–1944 period’, Int. J. Climatol. 23, 769–791.CrossRefGoogle Scholar
  5. Brönnimann, S., Luterbacher, J., Staehelin, J., Svendby, T. M., Svenoe, T., and Hansen, G.: 2004, ‘Extreme climate of the global troposphere and stratosphere in 1940–42 related to El Ni no’, Nature 431, 971–974.CrossRefADSGoogle Scholar
  6. Brönimann, S., Mohr, C., Ewen, T., and Grant, A.: 2005a, ‘The Finnish radiosonde records from Ilmala, Rovaniemi, and Äänislinna, 1942–1947’, Technical Report, ETH Zürich, 13 pp.Google Scholar
  7. Brönimann, S., Compo, G. P., Sardeshmukh, P. D., Jenne, R., and Sterin, A.: 2005b, ‘New approaches for extending the 20th century climate record’, Eos 86, 2–7.CrossRefADSGoogle Scholar
  8. Cook, E. R., Briffa, K. R., and Jones, P. D.: 1994, ‘Spatial regression methods in dendroclimatology – a review and comparison of two techniques’, Int. J. Climatol. 14, 379–402.CrossRefGoogle Scholar
  9. Crooks, S. A. and Gray, L. J.: 2005, ‘Characterization of the 11-year solar signal using a multiple regression analysis of the ERA-40 dataset’. J. Clim. 18, 996–1015.CrossRefADSGoogle Scholar
  10. Crowley, T. J.: 2000, ‘Causes of climate change over the past 1000 years’, IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series, 2000–045, NOAA/NGDC Paleoclimatology Program, Boulder CO, USA.Google Scholar
  11. Durre, I., Vose, R. S., and Wurtz, D. B.: 2005, ‘Overview of the Integrated Global Ruadiosonde Archive’, J. Clim., 10, 53–68.Google Scholar
  12. Evans, M. N. and Kaplan, A.: 2004, ‘The Pacific sector Hadley and Walker Circulations in historical marine wind analyses’, in: H. Diaz and R. Bradley (eds.) The Hadley Circulation: Past, Present, and Future, Advances in Global Change Research 21, Kluwer Academic Publishers, pp. 239–258.Google Scholar
  13. Gleisner, H. and Thejll, P.: 2003, ‘Patterns of tropospheric response to solar variabiity’, Geophys. Res. Lett. 30, 1711, doi:10-1029/2003GL017129.Google Scholar
  14. Gray, L. J., Crooks, S. A., Palmer, M. A., Pascoe, C. L., and Sparrow, S.: 2006, ‘Apossible transfer mechanism for the 11-year solar cycle to the lower stratosphere’, Space Sci. Rev., this volume, doi: 10.1007/s11214-006-9069-y.Google Scholar
  15. Haigh, J. D.: 1999, ‘A GCM study of climate change in response to the 11-year solar cycle’, Q. J. Roy. Meteorol. Soc. 125, 871–892.CrossRefADSGoogle Scholar
  16. Haigh, J. D.: 2003, ‘The effects of solar variability on climate’, Phil. Trans. R. Soc. Lond. A, 361, 95–111.CrossRefADSGoogle Scholar
  17. Haigh, J. D. and Blackburn, M.: 2006, ‘Solar influences on dynamical coupling between the stratosphere and troposphere’, Space Sci. Rev., this volume, doi: 10.1007/s11214-006-9067-0.Google Scholar
  18. Hansen, J., Ruedy, R., Glascoe, J., and Sato, M.: 1999, ‘GISS analysis of surface temperature change’, J. Geophys. Res. 104, 30,997–31,022.ADSGoogle Scholar
  19. Ingram, W. J.: 2006, ‘Detection and attribution of climate change, and understanding solar influence on climate’, Space Sci. Rev., this volume, doi: 10.1007/s11214-006-9057-2.Google Scholar
  20. Jones, P. D., New, M., Parker D. E., Martin, S., and Rigor, I. G.: 1999, ‘Surface air temperature and its changes over the past 150 years’, Rev. Geophys. 37, 173–199.CrossRefADSGoogle Scholar
  21. Kistler, R., et al.: 2001, ‘The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation’, B. Am. Meteorol. Soc. 82, 247–267.CrossRefADSGoogle Scholar
  22. Labitzke, K.: 2003, ‘The global signal of the 11-year sunspot cycle in the atmosphere: When do we need the QBO?’, Met. Z. 12, 209–216.CrossRefGoogle Scholar
  23. Labitzke, K. and van Loon, H.: 1997, ‘The signal of the 11-year sunspot cycle in the upper troposphere-lower stratosphere’, Space Sc. Rev. 80, 393–410.CrossRefADSGoogle Scholar
  24. Larkin, A., Haigh, J. D., and Djavidnia, S.: 2000, ‘The effect of solar UV irradiance variations on the Earth's atmosphere’, Space Sci. Rev. 94, 199–214.CrossRefADSGoogle Scholar
  25. Lean, J.: 2004, ‘Solar Irradiance Reconstruction’, IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series, 2004–035, NOAA/NGDC Paleoclimatology Program, Boulder CO, USA.Google Scholar
  26. Lohmann, G., Rimbu, N., and Dima, M.: 2004, ‘Climate signature of solar irradiance variations: Analysis of long-term instrumental, historical, and proxy data’, Int. J. Clim. 24, 1045–1056.CrossRefGoogle Scholar
  27. Meehl, G. A., Washington, W. M., Wigley, T. M. L., Arblaster, J. M., and Dai, A.: 2003, ‘Solar and greenhouse gas forcing and climate response in the twentieth century’, J. Clim. 16, 426–444.CrossRefADSGoogle Scholar
  28. Meehl, G. A., Washington, W. M., Wigley, T. M. L., Arblaster, J. M., and Dai, A.: 2004, ‘Mechanisms of an intensified Hadley circulation in response to solar forcing in the 20th century’, in: H. Diaz and R. Bradley (eds.), The Hadley Circulation: Past, Present, and Future, Advances in Global Change Research 21, Kluwer Academic Publishers.Google Scholar
  29. North, G. R., Wu, Q., and Stevens, J.: 2004, ‘Detecting the 11-year solar cycle in the surface temperature field’, in: J. M. Pap and P. Fox (eds.), Solar Variability and its Effects on Climate, Geophysical Monograph 141, American Geophysical Union, pp. 251–260.Google Scholar
  30. Rind, D.: 2002, ‘Climatology –The sun's role in climate variations’, Science 296, 673–677.CrossRefADSGoogle Scholar
  31. Rind, D., and Perlwitz, J.: 2004, ‘The response of the Hadley circulation to climate changes, past and future’, In: H. Diaz and R. Bradley (eds.), The Hadley Circulation: Past, Present, and Future, Advances in Global Change Research 21, Kluwer Academic Publishers, pp. 399–435.Google Scholar
  32. Sato, M., Hansen, J., McCormick, M. P., and Pollack, J. B.: 1993, ‘Stratospheric aerosol optical depths, 1850–1990’, J. Geophys. Res. 98, 22,987–22,994.ADSCrossRefGoogle Scholar
  33. Schlesinger, M. A. and Andronova, N. G.: 2004, ‘Has the sun changed climate? Modelling the effect of solar variability on climate’, In: J. M. Pap and P. Fox (eds.), Solar Variability and its Effects on Climate, Geophysical Monograph 141, American Geophysical Union, pp. 262–282.Google Scholar
  34. Shindell, D. T., Rind, D., Balachandran, N., Lean, J., and Lonergan, P.: 1999, ‘Solar cycle variability, ozone and climate’, Science 284, 305–308.CrossRefADSGoogle Scholar
  35. Shindell, D. T., Schmidt, G. A., Mann, M. E., Rind, D., and Waple, A.: 2001, ‘Solar forcing of regional climate change during the Maunder Minimum’, Science 294, 2149–2152.CrossRefADSGoogle Scholar
  36. Smith, T. M. and Reynolds, R. W.: 2004, ‘Improved extended reconstruction of SST (1854–1997)’, J. Clim. 17, 2466–2477.CrossRefADSGoogle Scholar
  37. Stott, P. A., Tett, S. F. B., Jones, G. S., Allen, M. R., Ingram, W. J., and Mitchell, J. F. B.: 2001, ‘Attribution of twentieth century temperature change to natural and anthropogenic causes’, Clim. Dyn. 17, 1–22.CrossRefGoogle Scholar
  38. Svensmark, H. and Friis-Christensen, E.: 1997, ‘Variation of cosmic ray flux and global cloud coverage – a missing link in solar-climate relationships’, J. Atmos. Sol.-Terr. Phys. 59, 1225–1232.CrossRefADSGoogle Scholar
  39. Tinsley, B. A. and Yu, F.: 2004, ‘Atmospheric ionization and clouds as links between solar activity and climate’, in: J. M. Pap and P. Fox (eds.), Solar Variability and its Effects on Climate, Geophysical Monograph 141, American Geophysical Union, pp. 321–339.Google Scholar
  40. van Loon, H., and Shea, D. J.: 1999, ‘A probable signal of the 11-yr solar cycle in the troposphere of the northern hemisphere’, Geophys. Res. Lett. 16, 2893–2896.CrossRefGoogle Scholar
  41. van Loon, H., Meehl, G. A., and Arblaster, J. M.: 2004, ‘A decadal solar effect in the tropics in July–August’, J. Atmos. Sol.-Terr. Phys. 66, 1767–1778.CrossRefADSGoogle Scholar
  42. Wang, Y. M., Lean, J. L., and Sheeley, N. R.: 2005, ‘Modeling the sun's magnetic field and irradiance since 1713’, Astrophys. J. 625, 522–538.CrossRefADSGoogle Scholar
  43. White, W. B., Cayan, D. R., and Lean, J.: 1998, ‘Global upper ocean heat storage response to radiative forcing from changing solar irradiance and increasing greenhouse gas/aerosol concentrations’, J. Geophys. Res. 103, 21,355–21,366.ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • S. Brönnimann
    • 1
  • T. Ewen
    • 1
  • T. Griesser
    • 1
  • R. Jenne
    • 2
  1. 1.Institute for Atmospheric and Climate Science, ETH ZürichZürichSwitzerland
  2. 2.National Center for Atmospheric Research (NCAR)BoulderUSA

Personalised recommendations