Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The Climate Response to the Astronomical Forcing


Links between climate and Earth’s orbit have been proposed for about 160 years. Two decisive advances towards an astronomical theory of palæoclimates were Milankovitch’s theory of insolation (1941) and independent findings, in 1976, of a double precession frequency peak in marine sediment data and from celestial mechanics calculations. The present chapter reviews three essential elements of any astronomical theory of climate: (1) to calculate the orbital elements, (2) to infer insolation changes from climatic precession, obliquity and eccentricity, and (3) to estimate the impact of these variations on climate. The Louvain-la-Neuve climate-ice sheet model has been an important instrument for confirming the relevance of Milankovitch’s theory, but it also evidences the critical role played by greenhouse gases during periods of low eccentricity. It is recognised today that climatic interactions at the global scale were involved in the processes of glacial inception and deglaciation. Three examples are given, related to the responses of the carbon cycle, hydrological cycle, and the terrestrial biosphere, respectively. The chapter concludes on an outlook on future research directions on this topic.

This is a preview of subscription content, log in to check access.


  1. Adkins, J. F., McIntyre, K., and Schrag, D. P.: 2002, ‘The salinity, temperature, and delta O-18 of the glacial deep ocean’, Science 298, 1769–1773.

  2. Archer, D., Winguth, A., Lea, D., and Mahowald, N.: 2000, ‘What caused the glacial/interglacial atmospheric pCO2 cycles?’, Rev. Geophys. 38, 159–189.

  3. Berger, A.: 1977, ‘Long-term variations of the Earth's orbital elements’, Celest. Mec. 15, 53–74.

  4. Berger, A.: 1978, ‘Long-term variations of daily insolation and Quaternary climatic changes’, J. Atmos. Sci. 35, 2362–2367.

  5. Berger, A. and Loutre, M. F.: 1991, ‘Insolation values for the climate of the last 10 million years’, Quat. Sci. Rev. 10, 297–317.

  6. Berger, A., Loutre, M. F., and Gallée, H.: 1998, ‘Sensitivity of the LLN climate model to the astronomical and CO2 forcings over the last 200 ky’, Clim. Dyn. 14, 615–629.

  7. Berger, A., Li, X. S., and Loutre, M. F.: 1999, ‘Modelling northern hemisphere ice volume over the last 3 Ma’, Quat. Sci. Rev. 18, 1–11.

  8. Braconnot, P., Harrison, S. P., Joussaume, S., Hewitt, C. D., Kitoh, A., Kutzbach, J. E., Liu, Z., Otto-Bliesner, B., Syktus, J., and Weber, N.: 2004, ‘Evaluation of PMIP coupled ocean-atmosphere simulations of the mid-holocene’, in R. W. Batterbee, F. Gasse, and C. E. Stickley (eds.), Past Climate Variability Through Europe and Africa, pp. 515–534.

  9. Bretagnon, P.: 1974, ‘Termes à longues périodes dans le système solaire’, Astron. Astroph. 30, 141–154.

  10. Broecker, W. S. and Peng, T. H.: 1989, ‘The cause of the glacial to interglacial atmospheric CO2’, Global Biogeochem. Cycles 3, 215–239.

  11. Chapront, J., Bretagnon, P., and Mehl, M.: 1975, ‘Un formulaire pour le calcul des perturbations d'ordres élevés dans les problèmes planétaires’, Celes. Mech. 34, 165–184.

  12. Claussen, M., Brovkin, V., Calov, R., Ganopolski, A., and Kubatzki, C.: 2005, ‘Did humankind prevent a Holocene glaciation?’, Clim. Change 69, 409–417.

  13. Crucifix, M. and Loutre, M. F.: 2002, ‘Transient simulations over the last interglacial period (126–115 kyr BP): feedback and forcing analysis’, Clim. Dyn. 19, 419–433.

  14. Crucifix, M., Loutre, M. F., and Berger, A.: 2005, ‘Commentary on “the anthropogenic greenhouse era began thousands of years ago”’, Clim. Change 69, 419–426.

  15. Danjon, A.: 1980, Astronomie générale. Libraire scientifique et technique A. Blanchard.

  16. de Garidel-Thoron, T., Rosenthal, Y., Bassinot, F., and Beaufort, L.: 2005, ‘Stable sea surface temperatures in the western Pacific warm pool over the past 1.75 million years’, Nature 433, 294–298.

  17. de Noblet, N., Braconnot, P., Joussaume, S., and Masson, V.: 1996, ‘Sensitivity of simulated Asian and African summer monsoons to orbitally induced variations in insolation at 126, 115 and 6 kBP’, Clim. Dyn. 12, 589–603.

  18. EPICA community members: 2004, ‘Eight glacial cycles from an Antarctic ice core’, Nature 429, 623–628.

  19. Gallée, H., van Ypersele, J. P. Fichefet, T., Marsiat, I., Tricot, C., and Berger, A.: 1992, ‘Simulation of the last glacial cycle by a coupled, sectorially averaged climate-ice sheet model. Part II: Response to insolation and CO2 variation’, J. Geophys. Res. 97, 15, 713–15, 740.

  20. Ghil, M. and Le Treut, H.: 1981, ‘A climate model with cryodynamics and geodynamics’, J. Geophys. Res. 86, 5262–5270.

  21. Hargreaves, J. C. and Annan, J. D.: 2002, ‘Assimilation of paleo-data in a simple Earth system model’, Clim. Dyn. 19, 371–381.

  22. Harrison, S. P., Kutzbach, J. E., Prentice, I. C., Behling, P. J. and Sykes, M. T.: 1995, ‘The response of Northern Hemisphere extratropical climate and vegetation to orbitally induced changes in insolation during the last interglacial’, Quat. Res. 43, 174–184.

  23. Hays, J., Imbrie, J. and Shackleton, N.: 1976, ‘Variations in the Earth's orbit: Pacemaker of ice ages’, Science 194, 1121–1132.

  24. Imbrie, J. and Imbrie, J. Z.: 1980, ‘Modelling the climatic response to orbital variations’, Science 207, 943–953.

  25. Imbrie, J. J., Hays, J. D., Martinson, D. G., McIntyre A., Mix, A. C., Morley, J. J., Pisias, N. G., Prell, W. L., and Shackleton, N. J.: 1984, ‘The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ18Orecord’, in A. Berger, J., Imbrie J., Hays, J., Kukla, and B. Saltzman (eds.), Milankovitch and Climate, Part I. Norwell, Mass., pp. 269–305.

  26. Joussaume, S. and Braconnot, P.: 1997, ‘Sensitivity of paleoclimate simulation results to season definition’, J. Geophys. Res. 102, 1943–1956.

  27. Kageyama, M., Charbit, S., Ritz, C., Khodri, M., and Ramstein, G.: 2004, ‘Quantifying ice-sheet feedbacks during the last glacial inception’, Geophysical Research Letters 31, L24903, doi:10.1029/2004GL021339.

  28. Köhler, P. and Fischer, H.: 2006, ‘Proposing a mechanistic understnading of changes in atmospheric CO2 during the last 740 000 years’, Clim. Past Discussions 2, 1–42.

  29. Kutzbach, J. E.: 1981, ‘Monsoon climate of the early Holocene: Climate experiment using the Earth's orbital parameters for 9000 years ago’, Science 214, 59–61.

  30. Lagrange, J. L.: 1781, ‘Théorie des variations séculaires des éléments des planètes 1.’, in Nouveaux mémoires de l'Académie Royale des Sciences et Belles-Lettres, Berlin, pp. 199–276.

  31. Laplace, P. S.: 1773, ‘Tome VIII’, in Oeuvres complètes. Compilation published by Gauthier-Villars, in 1891, p. 199.

  32. Laskar, J.: 1984, ‘Théorie générale planétaire: Eléments orbitaux des planètes sur 1 million d'années’, Ph.D. thesis, Obervatoire de Paris, Meudon, France.

  33. Laskar, J.: 1988, ‘Secular evolution of the solar system over 10 millions years’, Astron. Astroph. 198, 341–362.

  34. Laskar, J.: 1999, ‘The limits of Earth orbital calculations for geological time-scale use’, Phil. Trans. R. Soc. Lond. A 357, 1735–1759.

  35. Laskar, J., Joutel, F., and Boudin, F.: 1993, ‘Orbital, precessional, and insolation quantities for the Earth from -20 Myr to +10 Myr’, Astron. Astroph. 270, 522–533.

  36. Laskar, J., Robutel, P., Joutel, F., Boudin, F., Gastineau, M., Correia, A. C. M., and Levrard, B.: 2004, ‘A long-term numerical solution for the insolation quantities of the Earth’, Astron. Astroph. 428, 261–285.

  37. Lourens, L. J., Wehausen, R., and Brumsack, H. J.: 2001, ‘Geological constraints on tidal dissipation and dynamical ellipticity of the Earth over the past three million years’, Nature 409, 1029–1033.

  38. Loutre, M. F. and Berger, A.: 2003, ‘Marine Isotope Stage 11 as an analogue for the present interglacial’, Glob. Plan. Change 36, 209–217.

  39. Loutre, M. F., Paillard, D., Vimeux, F., and Cortijo, E.: 2004, ‘Does mean annual insolation have the potential to change the climate?’, Earth Planet. Sci. Lett. 221, 1–14.

  40. Martin, J. H., Gordon, R. M., and Fitzwater, S. E.: 1990, ‘Iron in Antarctic waters’, Nature 345, 156–158.

  41. Meissner, K. J., Weaver, A. J., and Matthews, H. D.: 2003, ‘The role of land surface dynamics in glacial inception: A study with the UVic Earth System Model’, Clim. Dyn. 21, 515–537.

  42. Milankovitch, M.: 1941, Canon of Insolation and the Ice-Age Problem. Edited and translated by the Serbian Academy of Science and Arts, 1998, Narodna biblioteka Srbije, Beograd.

  43. Mudelsee, M. and Schulz, M.: 1997, ‘The Mid-Pleistocene climate transition: Onset of 100 ka cycle lags ice volume build-up by 280 ka’, Earth Planet. Sci. Lett. 151, 117–123.

  44. Otterman, J., Chou, M.-D., and Arking, A.: 1984, ‘Effects of nontropical forest cover on climate’, J. Appl. Meteor. 23, 762–767.

  45. Paillard, D. and Parrenin, F.: 2004, ‘The Antarctic ice sheet and the triggering of deglaciations’, Earth Planet. Sci. Lett. 227, 263–271.

  46. Pälike, H., Shackleton, N. J., and Rohl, U.: 2001, ‘Astronomical forcing in Late Eocene marine sediments’, Earth Planet. Sci. Lett. 193, 589–602.

  47. Parrenin, F. and Paillard, D.: 2003, ‘Amplitude and phase of glacial cycles from a conceptual model’, Earth Planet. Sci. Lett. 214, 243–250.

  48. Parrenin, F., Remy, F., Ritz, C., Siegert, M. J., and Jouzel, J.: 2004, ‘New modeling of the Vostok ice flow line and implication for the glaciological chronology of the Vostok ice core’, J. Geophys. Res. 109, doi:10.1029/2004JD004561.

  49. Pearson, P. N. and Palmer, M. R.: 2000, ‘Atmospheric carbon dioxide concentrations over the past 60 million years’, Nature 406, 695–699.

  50. Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I. Barnola, J.-M. Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pépin, L., Ritz, C., Saltzman, E., and Stievenard, M.: 2001, ‘Climate and atmospheric history of the past 420, 000 years from the Vostok ice core, Antarctica’, Nature 399, 429–436.

  51. Ridgwell, A. J., Watson, A. J., Maslin, M. A., and Kaplan, J.: 2003, ‘Implications of coral reef buildup for the controls on atmospheric CO2 since the Last Glacial Maximum’, Paleoceanogr. 18, Art. No. 1083.

  52. Ruddiman, W. F.: 2003, ‘The anthropogenic greenhouse era began thousands of years ago’, Clim. Change 61, 261–293.

  53. Ruddiman, W. F.: 2005, ‘The early anthropogenic hypothesis a year later – An editorial reply’, Clim. Change 69, 427–434.

  54. Ruddiman, W. F., Raymo, M., and McIntyre, A.: 1986, ‘Mutuyama 41, 000-year cycles: North Atlantic Ocean and northern hemisphere ice sheets’, Earth Planet. Sci. Lett. 80, 117–129.

  55. Ruddiman, W. F., Vavrus, S. J., and Kutzbach, J. E.: 2005, ‘A test of the overdue-glaciation hypothesis’, Quat. Sci. Rev. 24, 1–10.

  56. Sanchez Goñi, M. F., Loutre, M. F., Crucifix, M., Peyron, O., Santos, L., Duprat, J., Turon, J. -L., and Peypouquet, J.-P.: 2005, ‘Increasing vegetation and climate gradient in Western Europe over the Last Glacial Inception (122-110 ka): models-data comparison’, Earth Planet. Sci. Lett. 231, 111–130.

  57. Shackleton, N. J.: 2000, ‘The 100,000-year ice-age cycle identified and found to lag temperature, Carbon Dioxide and orbital eccentricity’, Science 289, 1897–1902.

  58. Siegenthaler, U., Stocker, T. F., Monnin, E., Lüthi, D., Schwander, J., Stauffer, B., Raynaud, D., Barnola, J.-M., Ficher, H., Masson-Delmott, V., and Jouzel, J.: 2005, ‘Stable carbon cycle-climate relationship during the late Pleistocene”’, Science 310, 1313–1317, doi:10.1126/science.1120130.

  59. Stephens, B. B. and Keeling, R. F.: 2000, ‘The influence of Antarctic sea-ice on glacial-interglacial CO2 variations’, Nature 404, 171–174.

  60. Vettoretti, G. and Peltier, W. R.: 2003a, ‘Post-Eemian glacial inception. Part I: the impact of summer seasonal temperature bias’, J. Climate 16, 889–911.

  61. Vettoretti, G. and Peltier, W. R.: 2003b, ‘Post-Eemian glacial inception. Part II: Elements of a cryospheric moisture pump’, J. Climate 16, 912–927.

Download references

Author information

Correspondence to M. Crucifix.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Crucifix, M., Loutre, M.F. & Berger, A. The Climate Response to the Astronomical Forcing. Space Sci Rev 125, 213–226 (2006).

Download citation


  • astronomical theory of palæoclimates
  • Milankovitch
  • insolation
  • CO2