Space Science Reviews

, Volume 125, Issue 1–4, pp 169–186 | Cite as

Atmospheric Aerosol and Cloud Condensation Nuclei Formation: A Possible Influence of Cosmic Rays?

  • F. ArnoldEmail author


A physical mechanism which may have a potential to connect climate with cosmic rays (CR) involves aerosol particle formation by CR generated atmospheric ions followed by new particle growth. Only grown particles can scatter sunlight efficiently and can eventually act as cloud condensation nuclei (CCN) and thereby may influence climate. Moreover grown particles live longer as they are less rapidly scavenged by pre-existing larger particles. The present paper discusses aerosol particle formation and growth in the light of new measurements recently made by our MPIK Heidelberg group. Emphasis is placed upon the upper troposphere where very low temperatures tend to facilitate new particle formation by nucleation. The new measurements include: laboratory measurements of cluster ions, aircraft measurements of ambient atmospheric ions, and atmospheric measurements of the powerful nucleating gas H2SO4 and its precursor SO2. The discussion also addresses model simulations of aerosol formation and growth. It is concluded that in the upper troposphere new aerosol formation by CR generated ions is a frequent process with relatively large rates. However new particle formation by homogeneous nucleation (HONU) which is not related to CR also seems to be efficient. The bottleneck in the formation of upper troposphere aerosol particles with sizes sufficiently large to be climate relevant is not nucleation but growth of small particles. Our recent upper troposphere SO2 measurements suggest that particle growth by gaseous sulphuric acid condensation is at least occasionally efficient. If so CR mediated formation of CCN sized particles should at least occasionally be operative in the upper troposphere.


aerosols clouds cosmic rays 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnold, F.: 1980a, ‘Multi-ion complexes in the stratosphere – Implications for trace gases and aerosol’, Nature 284, 610–611.CrossRefADSGoogle Scholar
  2. Arnold, F.: 1980b, ‘Ion-induced nucleation of atmospheric water vapour at the mesopause’, Planet Space Sci. 28, 1003.CrossRefADSGoogle Scholar
  3. Arnold, F.: 1981a, ‘Solvated electrons in the upper atmosphere’, Nature 294, 732.CrossRefADSGoogle Scholar
  4. Arnold, F.: 1981b, ‘Ion nucleation – a potential source for stratospheric aerosols’, Nature 299, 134.CrossRefADSGoogle Scholar
  5. Arnold, F. and Fabian, R.: 1980, ‘First measurements of gas phase sulfuric acid in the stratosphere’, Nature 282, 55.CrossRefADSGoogle Scholar
  6. Arnold, F., Wilhelm, S., and Pirjola, L.: 2006, ‘Cosmic ray induced formation of aerosol particles and cloud condensation nuclei: First detection of large negative and positive cluster ions in the upper troposphere’, manuscript in preparation.Google Scholar
  7. Bates, D. R.: 1985, ‘Ion-ion recombination in an ambient gas’, Adv. Atom. Molec. Phys. 20.Google Scholar
  8. Carslaw, K. S., Harrison, R. G., and Kirkby, J.: 2002, ‘Cosmic rays, clouds and climate’, Science 298, 1732–1737.CrossRefADSGoogle Scholar
  9. Chen, Y. and Penner, J. E.: 2005, ‘Uncertainty analysis of the first indirect aerosol effect’, Atmos. Chem. Phys. 5, 2935–2948.CrossRefGoogle Scholar
  10. Curtius, J., Froyd, K. D., and Lovejoy, E. R.: 2001, ‘Cluster ion thermal decomposition (I): Experimental kinetics study and ab initio calculations for HSO4 -(H2SO4)x(HNO3)y’, J. Phvs. Chem. A 105, 10,867–10,873.Google Scholar
  11. Eichkorn, S.: 2001, ‘Development of an aircraft-based ion mass spectrometer with a large mass range: Measurements in the laboratory, aircraft exhaust plumes and the upper troposphere’, Ph. D. thesis, Univ. Heidelberg.Google Scholar
  12. Eichkorn, S., Wilhelm, S., Aufmhoff, H., Wohlfrom, K. H., and Arnold, F.: 2002, ‘Cosmic ray-induced aerosol-formation: First observational evidence from aircraft-based ion mass spectrometer measurements in the upper troposphere’, Geophys. Res. Lett. 29, 10.1029/2002GL015044.Google Scholar
  13. Fiedler, V., Dal Maso, M., Boy, M., Aufmhoff, H., Hoffmann, J., Schuck, T., Birmili, W., Arnold, F., and Kulmala, M.: 2005, ‘The contribution of suphuric acid to atmospheric particle formation and growth: a comparison between boundary layers in Northern and Central Europe’, Atmos. Chem. Phys. Disc. 5, 1–33.Google Scholar
  14. Froyd, K. D., and Lovejoy, E. R.: 2003, ‘Experimental thermodynamics of cluster ions composed of H2SO4 and H2O. 2. Negative ion measurements and ab initio structures’, J. Phvs. Chem. A 107, 9812–9824.CrossRefGoogle Scholar
  15. Harrison, R. G., and Carslaw, K. S.: 2003, ‘Ion-aerosol-cloud processes in the lower atmosphere’, Rev. Geophys. 41, 1012, doi:10.1029/2002RG000114.CrossRefADSGoogle Scholar
  16. Harrison, R. G. and Stephenson, D. B.: 2006, ‘Empirical evidence for a nonlinear effect of cosmic rays on clouds’, Proc. R. Soc. A, in press.Google Scholar
  17. Heitmann, H. and Arnold, F.: 1983, ‘Composition measurements of tropospheric ions’, Nature 306, 747.CrossRefADSGoogle Scholar
  18. Kazil, J. and Lovejoy, E. R.: 2004, ‘Tropospheric ionization and aerosol production: A model study’, J. Geophys. Res. 109, 10.1029/2004JD004852. Google Scholar
  19. Kolb, C. E., Jayne, J. T., Wornshop, D. R., Molina, M. J., Meads, R. F., and Viggiano, A. A.: 1994, ‘Gas phase reaction of sulfur trioxide with water vapour’, J. Atmos. Chem. Soc. 116, 10,314–10,315.Google Scholar
  20. Kulmala, M., Vehkamäki, H., Petäjä, T., Dal Maso, M., Lauri, A., Kerminen, V.-M., Birmili, W., and McMurry, P. H.: 2004, ‘Formation and growth rates of ultrafine atmospheric particles: A review of observations’, J. Aerosol Sci. 35, 10.1016/j.jaerosci.2003.10.003.Google Scholar
  21. Laaksonen, A., Talanquer, V., and Oxtoby, D. W.: 1995, ‘Nucleation: Measurements, Theory, and Atmospheric Applications’, Ann. Rev. Phys. Chem. 46, 489–524.CrossRefADSGoogle Scholar
  22. Lee, S. H., et al.: 2003, ‘Particle formation by ion nucleation in the upper troposphere and lower stratosphere’, Science 301, 1886–1889.CrossRefADSGoogle Scholar
  23. Lohmann U. and Feichter, J.: 2005, ‘Global indirect aerosol effects: a review’, Atmos. Chem. Phys. Discuss. 5, 715–737.ADSGoogle Scholar
  24. Lovejoy, E. R. and Curtius, J.: 2001, ‘Cluster Ion Thermal Decomposition (II): Master Equation Modeling in the Low Pressure Limit and Fall-Off Regions. Bond Energies for HSO4 -(H2SO4)x (HNO3)y’, J. Phys. Chem. A 105, 10,874–10,883.CrossRefGoogle Scholar
  25. Lovejoy, E. R., Hanson, D. R., AND Huey, G. G.: 1996, ‘Kinetics and products of gas-phase reactions of SO3 with water’, J. Phys. Chem. 100, 19.911–19.916.Google Scholar
  26. Lovejoy, E. R., Curtius, J., and Froyd, K. D.: 2004, ‘Atmospheric ion-induced nucleation of sulphuric acid and water’, J. Geophys. Res. 109, 10.1029/2003JD004460.Google Scholar
  27. Marsh, N. D. and Svensmark, H.: 2000, ‘Low cloud properties influenced by cosmic rays’, Phys. Rev. Lett. 85, doi:10.1103/PhysRevLett.85.5004.Google Scholar
  28. Möhler, O. and Arnold, F.: 1992, ‘Gaseous sulphuric acid and sulfur dioxide measurements in the arctic troposphere and lower stratosphere: Implications for hydroxyl radical abundances’, Geophys. Res. Lett. 19, 1763–1766.ADSGoogle Scholar
  29. Neff, U., et al.: 2001, ‘Strong coincidence between solar variability and the monsoon in Oman between 9 and 6 kyr ago’, Nature 411, 290–293.CrossRefADSGoogle Scholar
  30. Ney, E. P.: 1959, ‘Cosmic radiation and the weather’, Nature 183, 451–452.CrossRefADSGoogle Scholar
  31. Reiner, T. and Arnold, F.: 1993, ‘Laboratory flow reactor measurements of the reaction SO2 + H2O + M → H2SO4 + M: Implications for gaseous H2SO4 and aerosol formation in the plume of jet aircraft’, Geophys. Res. Lett. 20, 2659–2662.ADSGoogle Scholar
  32. Reiner, T. and Arnold, F.: 1994, ‘Laboratory investigations of gaseous sulfuric acid formation viabreak SO2 + H2O + M → H2SO4 + M: Measurements of the rate constant and products identification’, J. Chem. Phys. 101, 7399–7407.CrossRefADSGoogle Scholar
  33. Shaviv, N. J.: 2002, ‘Cosmic ray diffusion from the galactic spiral arms, iron meteorites, and a possible climatic connection’, Phys. Rev. Lett. 89, doi: 10.1103/PhysRevLett.89.051102.Google Scholar
  34. Shaviv, N. R. and Veizer, J.: 2004, ‘Celestial driver of phanerozoic climate?’, GSA Today 13, 7.Google Scholar
  35. Sorokin, A., Arnold, F., and Wiedner, D.: 2006, ‘Flow reactor experiments and model calculations of sulfuric acid-water cluster ion formation and ion-induced nucleation’, Atmos. Env., in press.Google Scholar
  36. Speidel et al.: 2006, ‘Sulfur Dioxide Measurements in the Lower, Middle and Upper Troposphere: Deployment of an Aircraft-Based Chemical Ionization Mass Spectrometer with permanent in-flight calibration’, manuscript in preparation.Google Scholar
  37. Viggiano, A. A. and Arnold, F.: 1995, Ion Chemistry and Composition of the Atmosphere, Handbook of Atmospheric Electrodynamics, Vol. 1, CRC Press.Google Scholar
  38. Wiedner, D.: 2000, ‘Flow reactor investigations of aerosol particle formation by ion induced nucleation: The H2SO4/H2O system’, Diploma thesis, Univ. Heidelberg.Google Scholar
  39. Wilhelm, S., Eichkorn, S., Wiedner, D., Pirjola, L., and Arnold, F.: 2004, ‘Ion-induced aerosol formation: new insights from laboratory measurements of mixed cluster ions HSO4 -(H2SO4)a(H2O)w and H+ (H2SO4)a(H2O)w’, Atmos. Env. 38, 1735–1744.CrossRefGoogle Scholar
  40. WMO: 2001, in J. T. Houghton, et al. (eds.), Climate change 2001: The Scientific Basis, Cambridge University Press.Google Scholar
  41. Yu, F.: 2002, ‘Altitude variations of cosmic ray induced production of aerosols: Implications for global cloudiness and climate’, J. Geophys. Res. 107, 10.1029/2001JA000248.Google Scholar
  42. Yu, F. and Turco, R. P.: 2001, ‘From molecular clusters to nanoparticles: Role of ambient ionisation in tropospheric aerosol formation’, J. Geophys. Res. 106, doi:,10.1029/2000JD900539.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Atmospheric Physics DivisionMax Planck Institute for Nuclear Physics (MPIK)HeidelbergGermany

Personalised recommendations