Advertisement

Space Science Reviews

, Volume 125, Issue 1–4, pp 159–167 | Cite as

Atmospheric Ion-induced Aerosol Nucleation

  • J. CurtiusEmail author
  • E. R. Lovejoy
  • K. D. Froyd
Article

Abstract

Ion-induced nucleation has been suggested to be a potentially important mechanism for atmospheric aerosol formation. Ions are formed in the background atmosphere by galactic cosmic rays. A possible connection between galactic cosmic rays and cloudiness has been However, the predictions of current atmospheric nucleation models are highly uncertain because the models are usually based on the liquid drop model that estimates cluster thermodynamics based on bulk properties (e.g., liquid drop density and surface tension). Sulfuric acid (H2SO4) and water are assumed to be the most important nucleating agents in the free troposphere. Measurements of the molecular thermodynamics for the growth and evaporation of cluster ions containing H2SO4 and H2O were performed using a temperature-controlled laminar flow reactor coupled to a linear quadrupole mass spectrometer as well as a temperature-controlled ion trap mass spectrometer. The measurements were complemented by quantum chemical calculations of the cluster ion structures. The analysis yielded a complete set of H2SO4 and H2O binding thermodynamics extending from molecular cluster ions to the bulk, based on experimental thermodynamics for the small clusters. The data were incorporated into a kinetic aerosol model to yield quantitative predictions of the rate of ion-induced nucleation for atmospheric conditions. The model predicts that the negative ion-H2SO4-H2O nucleation mechanism is an efficient source of new particles in the middle and upper troposphere.

Keywords

ion-induced nucleation aerosol clusters ions particles atmosphere sulfuric acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, F.: 1980, ‘Multi-ion complexes in the stratosphere – implications for trace gases and aerosol’, Nature 284, 610–611.CrossRefADSGoogle Scholar
  2. Ball, S. M., Hanson, D. R., and Eisele, F. L.: 1999, ‘Laboratory studies of particle nucleation: Initial results for H2SO4, H2O, and NH3 vapors’, J. Geophys. Res. 104, 23, 709–23, 718.CrossRefGoogle Scholar
  3. Bonn, B. and Moortgart, G. K.: 2003, ‘Sesquiterpene ozonolysis: Origin of atmospheric new particle formation from biogenic hydrocarbons’, Geophys. Res. Lett. 30, 10.1029/2003GL017000.Google Scholar
  4. Carslaw, K. S., Harrison, R. G., and Kirby, J.: 2002, ‘Cosmic Rays, Clouds, and Climate’, Science 298, 1732–1737.CrossRefADSGoogle Scholar
  5. Clarke, A. D., Varner, J. L., Eisele, F., Mauldin, R. L., Tanner, D., and Litchy, M.: 1998, ‘Particle production in the remote marine atmosphere: Cloud outflow and subsidence during ACE 1, J. Geophys. Res. 103, 16,397–16,409.Google Scholar
  6. Curtius, J., Froyd, K. D., and Lovejoy, E. R.: 2001, ‘Cluster ion thermal decomposition (I): Experimental kinetics study and ab intio calculations for HSO4 (H2SO4)x(HNO3)y’, J. Phys. Chem. A 105, 10,867–10,873.CrossRefGoogle Scholar
  7. Eichkorn, S., Wilhelm, S., Aufmhoff, H., Wohlfrom, K. H., and Arnold, F.: 2002, ‘Cosmic ray-induced aerosol-formation: First observational evidence from aircraft-based ion mass spectrometer measurements in the upper troposphere’, Geophys. Res. Lett. 29, 10.1029/2002GL015044.Google Scholar
  8. Froyd, K. D., and Lovejoy, E. R.: 2003, ‘Experimental thermodynamics of cluster ions composed of H2SO4 and H2O. 2. Negative ion measurements and ab initio structures’, J. Phys. Chem. A 107, 9812–9824.CrossRefGoogle Scholar
  9. Kazil, J., and Lovejoy, E. R.: 2004, ‘Tropospheric ionization and aerosol production: A model study’, J. Geophys. Res. 109, 10.1029/2004JD004852.Google Scholar
  10. Kulmala, M., Vehkamäki, H., Petäjä, T., Dal Maso, M., Lauri, A., Kerminen, V.-M., Birmili, W., and McMurry, P. H.: 2004, ‘Formation and growth rates of ultrafine atmospheric particles: A review of observations’, J. Aerosol Sci. 35, 143–176, 10.1016/j.jaerosci.2003.10.003.CrossRefGoogle Scholar
  11. Laaksonen, A., Talanquer, V., and Oxtoby, D. W.: 1995, ‘Nucleation: Measurements, theory, and Atmospheric Applications’, Ann. Rev. Phys. Chem. 46, 489–524.CrossRefGoogle Scholar
  12. Lovejoy, E. R., and Curtius, J.: 2001, ‘Cluster ion thermal decomposition (II): Master equation modeling in the low pressure limit and fall-off regions. Bond Energies for HSO4 (H2SO4)x (HNO3)y’, J. Phys. Chem. A 105, 10, 874–10, 883.CrossRefGoogle Scholar
  13. Lovejoy, E. R., Curtius, J., Froyd, K. D.: 2004, ‘Atmospheric ion-induced nucleation of sulphuric acid and water’, J. Geophys. Res. 109, 10.1029/2003JD004460.Google Scholar
  14. Marsh, N. D., and Svensmark, H.: 2000, ‘Low cloud properties influenced by cosmic rays’, Phys. Rev. Lett. 85, 5004–5007.CrossRefADSGoogle Scholar
  15. O'Dowd, C. D., Jimenez, J. L., Bahreini, R., Flagan, R. C., Seinfeld, J. H., Hämeri, K., Pirjola, L., Kulmala, M., Jennings, S. G., and Hoffmann, T.: 2002, ‘Marine aerosol formation from biogenic iodine emissions’, Nature 417, 632–636, 10.1038/nature00775.CrossRefADSGoogle Scholar
  16. Rosen, J. M., Hofmann, D. J., and Gringel, W.: 1985, ‘Measurements of ion mobility to 30 km’, J. Geophys. Res. 90, 5876–5884.ADSCrossRefGoogle Scholar
  17. Weber, R. J., McMurry, P. H., Mauldin III, R. L., Tanner, D. J., Eisele, F. L., Clarke, A. D., and Kapustin, V. N.: 1999, ‘New particle formation in the remote troposphere: A comparison of observations at various sites’, Geophys. Res. Lett. 26, 307–310.CrossRefADSGoogle Scholar
  18. Wyzlozil, B. E., Seinfeld, J. H., Flagan, R. C., and Okuyama, K.: 1991, ‘Binary nucleation in acid-water systems. II. Sulfuric acid-water and a comparison with methanesulfonic acid-water’, J. Chem. Phys. 94, 6842–6850.CrossRefADSGoogle Scholar
  19. Yu, F.: 2002, ‘Altitude variations of cosmic ray induced production of aerosols: Implications for global cloudiness and climate’, J. Geophys. Res. 107, 10.1029/2001JA000248.Google Scholar
  20. Yu, F., and Turco, R. P.: 2001, ‘From molecular clusters to nanoparticles: Role of ambient ionization in tropospheric aerosol formation’, J. Geophys. Res. 106, 4797–4814.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Institut für Physik der AtmosphäreUniversität MainzMainzGermany
  2. 2.NOAA ESRL Chemical Sciences DivisionBoulderUSA
  3. 3.Cooperative Institute for Research in the Environmental ScienceUniversity of ColoradoBoulderUSA

Personalised recommendations