Space Science Reviews

, Volume 125, Issue 1–4, pp 149–157 | Cite as

Aerosol-Cloud Interactions Control of Earth Radiation and Latent Heat Release Budgets

Article

Abstract

Aircraft observations and model simulations show that cloud development is strongly modulated by the impact of cloud-aerosol interactions on precipitation forming processes. New insights into the mechanisms by which aerosols dominate the cloud cover of marine shallow clouds suggest that feedbacks between the cloud microstructure and cloud dynamics through precipitation processes play a major role in determining when a solid cloud cover will break up into a field of trade wind cumulus. Cloud-aerosol interactions dominate not only the dynamics of marine shallow clouds, but also the lifetime and the vertical disposition of latent heat of deep convective clouds over ocean and even more strongly over land. Recent coincident satellite measurements of aerosols and cloud properties quantify the aerosol effects on cloud cover and radiative forcing on regional and global scales. The shapes of the satellite retrieved relations between aerosols and cloud properties are consistent with the suggested ways by which aerosols affect clouds via precipitation processes, particularly by affecting the intensity of the cloud vertical air motions and its vertical development.

Keywords

climate change cloud-aerosol-interactions precipitation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albrecht, B. A.: 1989, ‘Aerosols, cloud microphysics, and fractional cloudiness’, Science 245, 1227–1230.CrossRefADSGoogle Scholar
  2. Andreae, M. O., Rosenfeld, D., Artaxo, P., Costa, A. A., Frank, G. P., Longo, K. M., and Silva-Dias, M. A. F.: 2004, ‘Smoking rain clouds over the Amazon’, Science 303, 1337–1342.CrossRefADSGoogle Scholar
  3. Carslaw, K. S., Harrison, R. G., and Kirkby, J.: 2002, ‘Cosmic rays, clouds, and climate’, Science 298, 1737–1739.CrossRefADSGoogle Scholar
  4. Gerber, H.: 1996, ‘Microphysics of marine stratocumulus clouds with two drizzle modes’, J. Atmos. Sci. 53, 1649–1662.CrossRefADSGoogle Scholar
  5. Grabowski, W. W.: 2003, ‘Impact of Cloud Microphysics on Convective—Radiative Quasi Equilibrium Revealed by Cloud-Resolving Convection Parameterization’, J. Clim. 16, 3463–3475.CrossRefADSGoogle Scholar
  6. IPCC: 2001, ‘Climate change 2001: The scientific basis’, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson (eds.), Cambridge University Press, Cambridge, UK, 881 pp.Google Scholar
  7. Khain, A., Rosenfeld, D., and Pokrovsky, A.: 2005, ‘Aerosol impact on the dynamics and microphysics of convective clouds’, Q. J. R. Meteorol. Soc., 131, 1–25..Google Scholar
  8. Kaufman, Y. J., Koren, I., Remer, L. A., Rosenfeld, D., Rudich, Y.: 2005, ‘Smoke, Dust and Pollution Aerosol Clouding the Atlantic Atmosphere’, Proc. Natl. Acad. Sci. USA 102, 11,207–11,212.Google Scholar
  9. Koren, I., Kaufman, Y. J., Rosenfeld, D., Remer, L. A., and Rudich, Y.: 2005, ‘Aerosol invigoration and restructuring of Atlantic convective clouds’, Geophys. Res. Lett. 32, doi:10.1029/2005GL023187.Google Scholar
  10. Ramanathan, V., Crutzen, P. J., Kiehl, J. T., and Rosenfeld, D.: 2001, ‘Aerosols, Climate and the Hydrological Cycle’, Science 294, 2119–2124.CrossRefADSGoogle Scholar
  11. Rosenfeld, D., and Gutman, G.: 1994, ‘Retrieving microphysical properties near the tops of potential rain clouds by multispectral analysis of AVHRR data’, Atmos. Res. 34, 259–283.CrossRefGoogle Scholar
  12. Rosenfeld, D., Lahav, R., Khain, A. P., and Pinsky, M.: 2002, ‘The role of sea-spray in cleansing air pollution over ocean via cloud processes’, Science 297, 1667–1670.CrossRefADSGoogle Scholar
  13. Rosenfeld, D., Kaufman, Y. J., and Koren, I.: 2006, ‘Switching cloud cover and dynamical regimes from open to closed Benard cells in response to the suppression of precipitation by aerosols’, Atmos. Chem. Phys. Disc. 6, 2503–2511.ADSCrossRefGoogle Scholar
  14. Sekiguchi, M., Nakajima, T., Suzuki, K., et al.: 2003, ‘A study of the direct and indirect effects of aerosols using global satellite data sets of aerosol and cloud parameters’, J. Geophys. Res. 108, doi:10.1029/2002JD003359.Google Scholar
  15. Svensmark, H., and Friis-Christensen, E.: 1997, ‘Variation of cosmic ray flux and global cloud coverage — a missing link in solar-climate relationships’, J. Atmos. Terr. Phys. 59, 1225–1232.CrossRefADSGoogle Scholar
  16. Twomey, S. A.: 1977, ‘The influence of pollution on the shortwave albedo of clouds’, J. Atmos. Sci. 34, 1149–1152.CrossRefADSGoogle Scholar
  17. Williams, E., Rosenfeld, D., Madden, M., et al.: 2002, ‘Contrasting convective regimes over the Amazon: Implications for cloud electrification’, J. Geophys. Res. 107, doi:10.1029/2001JD000380.Google Scholar
  18. Wood, R., and Hartmann, D. L.: 2006, ‘Spatial variability of liquid water path in marine low cloud: The importance of mesoscale cellular convection’, J. Clim. 19, 1748–1764.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Institute of Earth SciencesThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations