Space Science Reviews

, Volume 125, Issue 1–4, pp 129–137

Aerosol Effects on Clouds and Climate

Article

Abstract

Aerosols affect the climate system by changing cloud characteristics in many ways. They act as cloud condensation and ice nuclei, they may inhibit freezing and they could have an influence on the hydrological cycle. While the cloud albedo enhancement (Twomey effect) of warm clouds received most attention so far and traditionally is the only indirect aerosol forcing considered in transient climate simulations, here I discuss the multitude of effects.

Keywords

aerosols clouds climate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, T. L., Charlson, R. J., Schwartz, S. E., Knutti, R., Boucher, O., Rodhe, H., and Heintzenberg, J.: 2003, ‘Climate forcing by aerosols — a hazy picture’, Science 300, 1103–1104.CrossRefGoogle Scholar
  2. Boucher, O. and Lohmann, U.: 1995, ‘The sulfate-CCN-cloud albedo effect: A sensitivity study with two general circulation models’, Tellus Ser. B, 47, 281–300.CrossRefGoogle Scholar
  3. Bréon, F.-M., Tanré, D., and Generoso, S.: 2002, ‘Aerosol effect on cloud droplet size monitored from satellite’, Science 295, 834–838.CrossRefADSGoogle Scholar
  4. Ghan, S. J., Easter, R. C., Chapman, E., Abdul-Razzak, H., Zhang, Y., Leung, R., Laulainen, N., Saylor, R., and Zaveri, R.: 2001, ‘A physically-based estimate of radiative forcing by anthropogenic sulfate aerosols’, J. Geophys. Res. 106, 5279–5293.CrossRefADSGoogle Scholar
  5. Jones, A., Roberts, D. L., and Woodage, M. J.: 2001, ‘Indirect sulphate aerosol forcing in a climate model with an interactive sulphur cycle’, J. Geophys. Res. 106, 20,293–30,310.ADSGoogle Scholar
  6. Khain, A., Rosenfeld, D., and Pokrovsky, A.: 2005, ‘Aerosol impact on the dynamics and microphysics of convective clouds’, Q. J. R. Meteorol. Soc. 131, 2639–2663.CrossRefADSGoogle Scholar
  7. Kinne, S., Schulz, M., Textor, C., Guibert, S., et al.: 2006, ‘An AeroCom initial assessment — optical properties in aerosol component modules of global models’, Atmos. Chem. Phys. 6, 1815–1834.CrossRefGoogle Scholar
  8. Koren, I., Kaufman, Y. J., Remer, L. A., and Martins, J. V.: 2004, ‘Measurements of the effect of smoke aerosol on inhibition of cloud formation’, Science 303, 1342–1345.CrossRefADSGoogle Scholar
  9. Kristjánsson, J. E.: 2002, ‘Studies of the aerosol indirect effect from sulfate and black carbon aerosols’, J. Geophys. Res. 107, doi: 10.1029/2001JD000887.Google Scholar
  10. Krüger, O. and Graßl, H.: 2002, ‘The indirect aerosol effect over Europe’, Geophys. Res. Lett. 29, doi: 10.1029/2001GL014081.Google Scholar
  11. Liepert, B. G.: 2002, ‘Observed reductions of surface solar radiation at sites in the United States and worldwide from 1961 to 1990’, Geophys. Res. Lett. 29, doi: 10.1029/2002GL014910.Google Scholar
  12. Liepert, B. G., Feichter, J., Lohmann, U., and Roeckner, E.: 2004, ‘Can aerosols spin down the water cycle in a warmer and moister world?’, Geophys. Res. Lett. 31, doi:10.1029/2003GL019060.Google Scholar
  13. Lohmann, U.: 2002, ‘A glaciation indirect aerosol effect caused by soot aerosols’, Geophys. Res. Lett. 29, doi: 10.1029/2001GL014357.Google Scholar
  14. Lohmann, U. and Lesins, G.: 2002, ‘Stronger constraints on the anthropogenic indirect aerosol effect’, Science 298, 1012–1016.CrossRefADSGoogle Scholar
  15. Lohmann, U. and Diehl, K.: 2006, ‘Sensitivity studies of the importance of dust ice nuclei for the indirect aerosol effect on stratiform mixed-phase clouds’, J. Atmos. Sci. 63, 968–982.CrossRefADSGoogle Scholar
  16. Lohmann, U. and Feichter, J.: 2005, ‘Global indirect aerosol effects: A review’, Atmos. Chem. Phys. 5, 715–737.Google Scholar
  17. Lohmann, U. Feichter, J., Penner, J. E., and Leaitch, W. R.: 2000, ‘Indirect effect of sulfate and carbonaceous aerosols: A mechanistic treatment’, J. Geophys. Res. 105, 12,193–12,206.ADSGoogle Scholar
  18. Menon, S., DelGenio, A. D., Koch, D., and Tselioudis, G.: 2002, ‘GCM simulations of the aerosol indirect effect: Sensitivity to cloud parameterization and aerosol burden’, J. Atmos. Sci. 59, 692–713.CrossRefADSGoogle Scholar
  19. Pinker, R. T., Zhang, B., and Dutton, E. G.: 2005, ‘Do satellites detect trends in surface solar radiation?’, Science 308, 850–854.CrossRefADSGoogle Scholar
  20. Quaas, J. and Boucher, O.: 2005, ‘Constraining the first aerosol indirect radiative forcing in the LMDZ GCM using POLDER and MODIS satellite data’, Geophys. Res. Lett. 32, doi: 10.1029/2005GL023850.Google Scholar
  21. Quaas, J., Boucher, O., and Bréon, F.-M.: 2004, ‘Aerosol indirect effects in POLDER satellite data and the Laboratoire de M'etéorologie Dynamique-Zoom (LMDZ) general circulation model’, J. Geophys. Res. 109, doi: 10.1029/2003JD004317.Google Scholar
  22. Quaas, J., Boucher, O., and Lohmann, U.: 2006, ‘A new estimate of the aerosol indirect radiative forcing by constraints of global climate models using satellite datasets’, Atmos. Chem. Phys. 6, 947–955.Google Scholar
  23. Ramanathan, V., Chung, C., Kim, D., Bettge, T., Buja, L., Kiehl, J. T., Washington, W. M., Fu, Q., Sikka, D. R., and Wild, M.: 2005, ‘Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle’, Proc. Nat. Acad. Sc. 102, 5326–5333.CrossRefADSGoogle Scholar
  24. Roderick, M. L. and Farquhar, G. D.: 2002, ‘The cause of decreased pan evaporation over the past 50 years’, Science 298, 1410–1411.ADSGoogle Scholar
  25. Roeckner, E., Bengtsson, L., Feichter, J., Lelieveld, J., and Rodhe, H.: 1999, ‘Transient Climate Change Simulations with a Coupled Atmosphere-Ocean GCM Including the Tropospheric Sulfur Cycle’, J. Climate 12, 3004–3032.CrossRefADSGoogle Scholar
  26. Roeckner, E., Stier, P., Feichter, J., Kloster, S., and Esch, M.: 2006, ‘Impact of carbonaceous aerosol emissions on regional climate change’, Clim. Dyn., in press.Google Scholar
  27. Rosenfeld, D. and Woodley, W. L.: 2000, ‘Deep convective clouds with sustained supercooled liquid water down to −37.5°C’, Nature 405, 440–442.CrossRefADSGoogle Scholar
  28. Rotstayn, L. D. and Penner, J. E.: 2001, ‘Indirect aerosol forcing, quasi-forcing, and climate response’, J. Climate 14, 2960–2975.CrossRefADSGoogle Scholar
  29. Sharma, S., Lavoué, D., Cachier, H., Barrie, L. A., and Gong, S. L.: 2004, ‘Long-term trends of the black carbon concentrations in the Canadian Arctic’, J. Geophys. Res. 109, doi: 10.1029/2003JD004331.Google Scholar
  30. Stanhill, G. and Cohen, S.: 2001, ‘Global dimming a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences’, Agric. For. Meteorol. 107, 255–278.CrossRefGoogle Scholar
  31. Takemura, T., Nozawa, T., Emori, S., Nakajima, T. Y., and Nakajima, T.: 2005, ‘Simulation of climate response to aerosol direct and indirect effects with aerosol transport-radiation model’, J. Geophys. Res. 110, doi:10.1029/2004JD00502.Google Scholar
  32. Wild, M., Ohmura, A., Gilgen, H., and Rosenfeld, D.: 2004, ‘On the consistency of trends in radiation and temperature records and implications for the global hydrological cycle’, Geophys. Res. Lett. 31, doi: 10.1029/2003GL019188.Google Scholar
  33. Wild, M., Gilgen, H., Roesch, A., Ohmura, A., Long, C. N., Dutton, E. G., Forgan, B., Kallis, A., Russak, V., and Tsvetkov, A.: 2005, ‘From dimming to brightening: Decadal changes in solar radiation at Earth's surface’, Science 308, 847–850.CrossRefADSGoogle Scholar
  34. Williams, K. D., Jones, A., Roberts, D. L., Senior, C. A., and Woodage, M. J.: 2001, ‘The response of the climate system to the indirect effects of anthropogenic sulfate aerosols’, Clim. Dyn. 17, 845–856.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Institute for Atmospheric and Climate Science, ETH ZurichZurichSwitzerland

Personalised recommendations