Space Science Reviews

, Volume 125, Issue 1–4, pp 67–79 | Cite as

Solar Variability Over the Past Several Millennia

  • J. BeerEmail author
  • M. Vonmoos
  • R. Muscheler


The Sun is the most important energy source for the Earth. Since the incoming solar radiation is not equally distributed and peaks at low latitudes the climate system is continuously transporting energy towards the polar regions. Any variability in the Sun-Earth system may ultimately cause a climate change. There are two main variability components that are related to the Sun. The first is due to changes in the orbital parameters of the Earth induced by the other planets. Their gravitational perturbations induce changes with characteristic time scales in the eccentricity (∼100,000 years), the obliquity (angle between the equator and the orbital plane) (∼40,000 years) and the precession of the Earth’s axis (∼20,000 years). The second component is due to variability within the Sun. A variety of observational proxies reflecting different aspects of solar activity show similar features regarding periodic variability, trends and periods of very low solar activity (so-called grand minima) which seem to be positively correlated with the total and the spectral solar irradiance. The length of these records ranges from 25 years (solar irradiance) to 400 years (sunspots). In order to establish a quantitative relationship between solar variability and solar forcing it is necessary to extend the records of solar variability much further back in time and to identify the physical processes linking solar activity and total and spectral solar irradiance. The first step, the extension of solar variability, can be achieved by using cosmogenic radionuclides such as 10Be in ice cores. After removing the effect of the changing geomagnetic field, a 9000-year long record of solar modulation was obtained. Comparison with paleoclimatic data provides strong evidence for a causal relationship between solar variability and climate change. It will be the subject of the next step to investigate the underlying physical processes that link solar variability with the total and spectral solar irradiance.


Solar activity solar influence on climate cosmogenic radionuclides 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbot, C. G.: 1910, ‘The solar constant of radiation’, Annual Report of the Smithsonian Institution, 319 pp.Google Scholar
  2. Beer, J., Blinov, A., Bonani, G., Finkel, R. C., Hofmann, J. J., et al.: 1990, ‘Use of 10Be in polar ice to trace the 11-year cycle of solar activity’, Nature 347, 164–166.CrossRefADSGoogle Scholar
  3. Beer, J., Baumgartner, S., Hannen-Dittrich, B., Hauenstein, J., Kubik, P., et al.: 1994, ‘Solar Variability Traced by Cosmogenic Isotopes’, in J. M. Pap, C. Fröhlich, H. S. Hudson, and S. K. Solanki (eds.), The Sun as a Variable Star: Solar and Stellar Irradiance Variations, Cambridge University Press, Cambridge, pp. 291–300.Google Scholar
  4. Berger, A.: 1978, ‘Long-Term Variations of daily insolation and quaternary climatic changes’, J. Atmos. Sci. 35, 2362–2367.CrossRefADSGoogle Scholar
  5. Bertrand, C., Loutre, M.-F., and Berger, A.: 2002, ‘High frequency variations of the Earth's orbital parameters and climate change’, Geophys. Res. Lett. 29, doi:10.1029/2002GL015622.Google Scholar
  6. Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M. N., et al.: 2001, ‘Persistent solar influence on north Atlantic climate during the Holocene’, Science 294, 2130–2136.CrossRefADSGoogle Scholar
  7. Broecker, W. S.: 1997, ‘Thermohaline circulation, the Achilles heel of our climate system: Will man-made CO2 upset the current balance?’, Science 278, 1582–1588.CrossRefADSGoogle Scholar
  8. Cubasch, U. and Voss, R.: 2000, ‘The influence of total solar irradiance on climate’, Space Sci. Rev. 94, 185–198.CrossRefADSGoogle Scholar
  9. Denton, G. H. and Karlén, W.: 1973, ‘Holocene climatic variations – their pattern and possible cause’, Quat. Res. 3, 155–205.CrossRefGoogle Scholar
  10. Eddy, J. A.: 1976, ‘The maunder minimum’, Science 192, 1189–1201.CrossRefADSGoogle Scholar
  11. Fröhlich, C.: 2006, ‘Solar irradiance variability since 1978’, Space Sci. Rev., this volume, doi: 10.1007/s11214-006-9046-5.Google Scholar
  12. Gleeson, L. J. and Axford, W. I.: 1967, ‘Cosmic rays in the interplanetary medium’, Astrophys. J. 149, L115–L118CrossRefADSGoogle Scholar
  13. Haigh, J.: 2006, ‘Solar influences on dynamical coupling between the stratosphere and troposphere’, Space Sci. Rev., this volume.Google Scholar
  14. Holzhauser, H.: 1997, ‘Gletscherschwankungen innerhalb der letzten 3200 Jahre am Beispiel des grossen Aletsch- und des Gornergletschers. Neue Ergebnisse’, in B. Salm (ed.), Gletscher im ständigen Wandel, VDF-Hochschulverlag AG, Zürich.Google Scholar
  15. Johnsen, S. J., Clausen, H. B., Dansgaard, W., Gundestrup, N. S., Hammer, C. U., et al.: 1997, ‘The δ18O record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climatic instability’, J. Geophys. Res. 102, 26,397–26,410.CrossRefADSGoogle Scholar
  16. Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and Levrard, B.: 2004, ‘A long-term numerical solution for the insolation quantities of the Earth’, Astron. Astrophys. 428, 261–285.CrossRefADSGoogle Scholar
  17. Lockwood, M.: 2006, ‘What do cosmogenic isotopes tell us about past solar forcing of climate?’, Space Sci. Rev., this volume, doi: 10.1007/s11214-006-9049-2.Google Scholar
  18. Masarik, J. and Beer, J.: 1999, ‘Simulation of particle fluxes and cosmogenic nuclide production in the Earth's atmosphere’, J. Geophys. Res. 104, 12,099–12,111.CrossRefADSGoogle Scholar
  19. McCracken, K. G.: 2004, ‘Geomagnetic and atmospheric effects upon the cosmogenic Be-10 observed in polar ice’, J. Geophys. Res. 109, doi:10.1029/2003JA010060.Google Scholar
  20. Milankovich, M.: 1930, ‘Mathematische Klimalehre und atsronomische Theorie der Klimaschwan- kungen’, in W. Köppen and R. Geiger (eds.), Handbuch der Klimatologie, Gebrüder Bornträger, Berlin, pp. 1–176.Google Scholar
  21. Muscheler, R., Beer, J., Wagner, G., Laj, C., Kissel, C., et al.: 2004, ‘Changes in the carbon cycle during the last deglaciation as indicated by the comparison of 10Be and 14C records’, Earth Planet. Sci. Let. 219, 325–340.CrossRefADSGoogle Scholar
  22. Neff, U., Burns, S., Mangini, A., Mudelsee, M., Fleitmann, D., and Matter, A.: 2001, ‘Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyrs ago’, Nature 411, 290–293.CrossRefADSGoogle Scholar
  23. Parker, E. N.: 1965, ‘The passage of energetic charged particles through interplanetary space’, Planet. Space Sci. 13, 9–49.CrossRefADSGoogle Scholar
  24. Radick, R. R.: 2001, ‘A brief survey of chromospheric and photometric variability among sunlike stars’, Adv. Space Res. 26, 1739–1745.CrossRefADSGoogle Scholar
  25. Rottman, G.: 2006, ‘Measurements of total and spectral solar irradiance’, Space Sci. Rev., this volume.Google Scholar
  26. Solanki, S. K.: 2006,‘Solar variability of possible relevance for planetary climates’, Space Sci. Rev., this volume, doi: 10.1007/s11214-006-9044-7.Google Scholar
  27. Spahni, R., Chappellaz, J., Stocker, T. F., Loulergue, L., Hausammann, G., et al.: 2005, ‘Atmospheric methane and nitrous oxide of the late Pleistocene from Antarctic ice cores’, Science 310, 1317–1321.CrossRefADSGoogle Scholar
  28. Vonmoos, M., Beer, J., and Muscheler, R.: 2006, ‘Large variations in Holocene solar activity constraints from 10Be in the GRIP ice core’, J. Geophys. Res., in press.Google Scholar
  29. Webber, W. R. and Higbie, P. R.: 2003, ‘Production of cosmogenic Be nuclei in the Earth's atmosphere by cosmic rays: Its dependence on solar modulation and the interstellar cosmic ray spectrum’, J. Geophys. Res. 108, 1355–1365.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Swiss Federal Institute of Environmental Science and Technology (EAWAG)DübendorfSwitzerland
  2. 2.NASA/Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations