Space Science Reviews

, Volume 125, Issue 1–4, pp 39–51 | Cite as

Measurement of Total and Spectral Solar Irradiance

Article

Abstract

The Sun’s electromagnetic radiation powers our solar system. In the case of the Earth it heats the lands and ocean, maintains our atmosphere, generates clouds, and cycles water. For other planets and minor bodies, similar and appropriate physical processes occur, also powered by the Sun. The Sun varies on all time scales and a precise knowledge of the Sun's irradiance and its variation is essential to our understanding of environments and physical conditions throughout our solar system. Measurements of solar irradiance and its variation can only be made from space, and almost thirty years of observation have now established that the total solar irradiance (TSI) varies by only 0.1 to 0.3%, while certain portions of the solar spectrum, the ultraviolet for example, vary by orders of magnitude more. This paper provides an overview of TSI observations and of spectral irradiance observations from the ultraviolet to the near infrared.

Keywords

solar irradiance solar activity cycle climate variability atmospheric photochemistry instruments and techniques 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbot, C. G.: 1948, ‘The Radiation of the Planet Earth to Space’, Smithsonian Miscellaneous Collections 110, Publication 3940.Google Scholar
  2. Brueckner, G. E., Edlow, K. L., Floyd, L. E., Lean, J. L., and VanHoosier, M. E.: 1993, ‘The solar ultraviolet spectral irradiance monitor (SUSIM) experiment on board the upper atmospheric research satellite (UARS)’, J. Geophys. Res. 98, 10695–10711.ADSGoogle Scholar
  3. Foukal, P. and Lean, J.: 1988, ‘Magnetic modulation of solar luminosity by photospheric activity’, Astrophys. J., Part I 328, 347–357.CrossRefADSGoogle Scholar
  4. Friedman, H.: 1961, ‘X-ray and Ultraviolet Radiation Measurements from Rockets’, in: W. Liller (ed.), Space Astrophysics, McGraw-Hill, N.Y., pp. 107–120.Google Scholar
  5. Fröhlich, C.: 2004, ‘Solar Irradiance Variability’, in: J. Pap, C. Fröhlich, H. Hudson, J. Kuhn, J. McCormack, G. North, W. Sprig, and S. T. Wu (eds.), Solar Variability and Its Effects on Climate, Geophysical Monograph Series 141, American Geophysical Union, Washington, D.C., pp. 97–110.Google Scholar
  6. Fröhlich, C.: 2006, ‘Solar irradiance variability since 1978’, Space Sci. Rev. this volume, doi: 10.1007/s11214-006-9045-6.Google Scholar
  7. Fröhlich, C. and Lean, J.: 1998, ‘The Sun's total irradiance: Cycles, trends, and related climate change uncertainties since 1976’, Geophys. Res. Lett. 25, 4377–4380.CrossRefADSGoogle Scholar
  8. Haigh, J. D.: 2001, ‘Climate variability and the influence of the Sun’, Science 294, 2109–2111.CrossRefGoogle Scholar
  9. Harder, J., Lawrence, G., Fontenla, J., Rottman, G., and Woods, T.: 2005a, ‘The spectral irradiance monitor: Scientific requirements, instrument design, and operation modes’, Solar Phys. 203, 141–167.CrossRefADSGoogle Scholar
  10. Harder, J., Fontenla, J., Lawrence, G., Woods, T., and Rottman, G.: 2005b, ‘The spectral irradiance monitor: Measurement equations and calibration’, Solar Phys. 203, 169–203.CrossRefADSGoogle Scholar
  11. Hickey, J. R., Stowe, L., Jacobowitz, H., Muschoff, R., House, F., and VonderHaar, T.: 1980, ‘Initial solar irradiance determinations from Nimbus 7 cavity radiometer measurements’, Science 208, 281.CrossRefADSGoogle Scholar
  12. Hickey, J. R., Alton, B. M., Kyle, H. L., and Hoyt, D. V.: 1988, ‘Total solar irradiance measurements by ERB/Nimbus—7, a review of nine years’, Space Sci. Rev. 48, 321–342.CrossRefADSGoogle Scholar
  13. Kiehl, J. T. and Trenberth, K. E.: 1997, ‘Earth's annual global mean energy budget’, Bull. Amer. Meteor. Soc. 78, 197–208.CrossRefADSGoogle Scholar
  14. Kopp, G. and Lawrence, G.: 2005, ‘The total irradiance monitor (TIM): Instrument Design’, Solar Phys. 203, 91–109.CrossRefADSGoogle Scholar
  15. Kopp, G., Heuerman, K., and Lawrence, G.: 2005, ‘The total irradiance monitor (TIM): Instrument Calibration’, Solar Phys. 203, 111–127.CrossRefADSGoogle Scholar
  16. Lean, J.: 1989, ‘Contribution of ultraviolet irradiance variations to changes in the Sun's total irradiance’, Science 244, 197–200.CrossRefADSGoogle Scholar
  17. Lean, J., Rottman, G., Harder, J., and Kopp, G.: 2005, ‘SORCE contributions to new understanding of global change and solar variability’, Solar Phys. 203, 27–53.CrossRefADSGoogle Scholar
  18. Lee, R. B., Barkstrom, B. R., and Cess, R. D.: 1987, ‘Characteristics of the earth radiation budget experiment solar monitors’, Appl. Opt. 26, 3090–3096.ADSCrossRefGoogle Scholar
  19. London, J. and Rottman, G. J.: 1989, ‘The contribution of solar UV irradiance variations to variations of the solar constant’, in: J. Lenoble and J. Geleyn (eds.), IRS'88: Current Problems in Atmospheric Radiation, A. Deepak Publishing, Hampton, Virginia, pp. 472–473.Google Scholar
  20. McClintock, W. E., Rottman, G. J., and Woods, T. N.: 2005a, ‘Solar stellar irradiance comparison experiment II (SOLSTICE II): Instrument concept and design’, Solar Phys. 203, 225–258.CrossRefADSGoogle Scholar
  21. McClintock, W. E., Snow, M., and Woods, T. N.: 2005b, ‘Solar stellar irradiance comparison experiment II (SOLSTICE II): Pre-launch and on-orbit calibrations’, Solar Phys. 203, 259–294.CrossRefADSGoogle Scholar
  22. Menzel, D. H.: 1949, Our Sun, The Blakiston Co., Garden City, NY.Google Scholar
  23. Rind, D.: 2002, ‘The Sun's role in climate variations’, Science 296, 673–677.CrossRefADSGoogle Scholar
  24. Rottman, G. J.: 2000, ‘Variations of solar ultraviolet irradiance observed by the UARS SOLSTICE —1991 to 1999’, Space Sci. Rev. 94, 83–91.CrossRefADSGoogle Scholar
  25. Rottman, G.: 2005, ‘The SORCE mission’, Solar Phys. 203, 7–25.CrossRefADSGoogle Scholar
  26. Rottman, G. J., Woods, T. N., and Sparn, T. P.: 1993, ‘Solar stellar irradiance comparison experiment I: 1 instrument design and operation’, J. Geophys. Res. 98, 10,667–10,677.ADSCrossRefGoogle Scholar
  27. Rottman, G. J., Floyd, L., and Viereck, R.: 2004, ‘Measurement of the solar ultraviolet irradiance’, in: J. Pap, C. Fröhlich, H. Hudson, J. Kuhn, J. McCormack, G. North, W. Sprig, and S. T. Wu (eds.), Solar Variability and Its Effects on Climate, Geophysical Monograph Series 141, American Geophysical Union, Washington, DC, pp. 111–126.Google Scholar
  28. Rottman, G., Harder, J., Fontenla, J., Woods, T., White, O. R., and Lawrence, G.: 2005, ‘ SIM: Early observations’, Solar Phys. 203, 205–224.CrossRefADSGoogle Scholar
  29. Skupin, J., Noël, S., Wuttke, M. W., Gottwald, M., Bovensmann, H., Weber, M., and Burrows, J. P.: 2005, ‘SCIAMACHY solar irradiance observation in the spectral range from 240 to 2380 nm’, Adv. Space Res. 35, 370–375.CrossRefADSGoogle Scholar
  30. White, O. R.: 1977, The Solar Output and Its Variation, Colorado Assoc. University Press, Boulder, CO.Google Scholar
  31. Willson, R. C.: 1984, ‘Measurements of solar total irradiance and its variability’, Space Sci. Rev. 38, 203–242.CrossRefADSGoogle Scholar
  32. Willson, R. C.: 1994, The Sun as Variable Star, Solar and Stellar Irradiance Variations, Cambridge Univ. Press, Cambridge, UK.Google Scholar
  33. Willson, R. C. and Hudson, H. S.: 1991, ‘The Sun's luminosity over a complete solar cycle’, Nature 351, 42–44.CrossRefADSGoogle Scholar
  34. Willson, R. C., Gulkis, S., Janssen, M., Hudson, H. S., and Chapman, G. A.: 1981, ‘Observations of solar irradiance variability’, Science 211, 700–702.CrossRefADSGoogle Scholar
  35. Woods, T. N., Rottman, G., and Vest, R.: 2005a, ‘ XUV photometer system (XPS): Overview and calibrations’, Solar Phys. 203, 345–374.CrossRefADSGoogle Scholar
  36. Woods, T. N., Eparvier, F. G., Bailey, S. M., Chamberlin, P. C., Lean, J., Rottman, G. J., Solomon, S. C., Tobiska, W. K., and Woodraska, D. L.: 2005b, ‘Solar EUV Experiment (SEE): Mission overview and first results’, J. Geophys. Res. 110, doi:10.1029/2004JA010765.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Laboratory for Atmospheric and Space PhysicsUniversity of ColoradoBoulderUSA

Personalised recommendations