Advertisement

Space Science Reviews

, Volume 128, Issue 1–4, pp 221–240 | Cite as

ROMAP: Rosetta Magnetometer and Plasma Monitor

  • H. U. AusterEmail author
  • I. Apathy
  • G. Berghofer
  • A. Remizov
  • R. Roll
  • K. H. Fornacon
  • K. H. Glassmeier
  • G. Haerendel
  • I. Hejja
  • E. Kührt
  • W. Magnes
  • D. Moehlmann
  • U. Motschmann
  • I. Richter
  • H. Rosenbauer
  • C. T. Russell
  • J. Rustenbach
  • K. Sauer
  • K. Schwingenschuh
  • I. Szemerey
  • R. Waesch
Article

Abstract

The scientific objectives, design and capabilities of the Rosetta Lander’s ROMAP instrument are presented. ROMAP’s main scientific goals are longterm magnetic field and plasma measurements of the surface of Comet 67P/Churyumov-Gerasimenko in order to study cometary activity as a function of heliocentric distance, and measurements during the Lander’s descent to investigate the structure of the comet’s remanent magnetisation. The ROMAP fluxgate magnetometer, electrostatic analyser and Faraday cup measure the magnetic field from 0 to 32 Hz, ions of up to 8000 keV and electrons of up to 4200 keV. Additional two types of pressure sensors – Penning and Minipirani – cover a pressure range from 10−8 to 101 mbar. ROMAP’s sensors and electronics are highly integrated, as required by a combined field/plasma instrument with less than 1 W power consumption and 1 kg mass.

Keywords

plasma physics comet fluxgate magnetometer electrostatic analyser 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acuna, M. H., Wasilewski, P., Kletetshka, G., Russell, C. T., Anderson, B. J., Zanetti, L., et al.: 2002, Icarus 155, 220.CrossRefADSGoogle Scholar
  2. A’Hearn, M. F., Millis, R. L., Schleicher, D. G., Osip, D. J., and Birch, P. V.: 1995, Icarus 118, 223.CrossRefADSGoogle Scholar
  3. A’Hearn, M. F., Belton, M. J. S., Delamere, W. A., Kissel, J., Klaasen, K. P., McFadden, L. A., et al.: 2005, Science 310, 258.CrossRefADSGoogle Scholar
  4. Auster, H. U., Lichopoj A., Rustenbach, J., Bitterlich, H., Fornacon, K. H., Hillenmaier, O., et al.: 1995, Meas. Sci. Technol. 6, 477.CrossRefADSGoogle Scholar
  5. Bagdonat, T., Motschmann, U., Glassmeier, K. H., and Kührt, E.: 2004, Plasma environment of comet Churyumov-Gerasimenko: 3D hybrid code simulations, The new Rosetta Targets, Kluwer, 153.Google Scholar
  6. Baumgärtel, K., Sauer, K., and Bogdanov, A.: 1994, Science 263, 653.CrossRefADSGoogle Scholar
  7. Blanco-Cano, X., Omidi, N., and Russell, C. T.: 2003, J. Geophys. Res. 108, No. A5, SSH 11.Google Scholar
  8. Crovisier, J., Colom, P., Gerard, E., Bockelee-Morvan, D., and Bourgois, G.: 2002, Astron. Astrophys. 393, 1053.CrossRefADSGoogle Scholar
  9. Dyal, P., and Curtis, W.P.: 1973, Phys. Earth Planetary Interior 7, 251.CrossRefADSGoogle Scholar
  10. Feldman, P. D., A’Hearn, M. F., and Festou, M. C.: 2004. Observations of Comet 67P/Churyumov-Gerasimenko with the International Ultraviolet Explorer at Perihelion in 1982, Kluwer, The New Rosetta Targets, pp. 47.Google Scholar
  11. Fornacon, K. H., Auster, H. U., Georgescu, E., Baumjohann, W., Glassmeier, K. H., Rustenbach, J., et al.: 1999, Ann. Geophys. 17, 1521.CrossRefADSGoogle Scholar
  12. Glassmeier, K. H., Richter, I., Diedrich, A., Musmann, G., Auster, H. U., Motschmann, U., et al.: Space Sci. Rev., this issue, doi: 10.1007/s11214-006-9114-x.Google Scholar
  13. Hedgecock, P. C.: 1975, Space Sci. Instrum. 1, 83.ADSGoogle Scholar
  14. Kivelson, M. G., Bargatze, L. F., Khurana, K. K., Southwood, D. J., Walker, R. J., and Coleman, Jr, P. J.: 1993, Science 261, 331.CrossRefADSGoogle Scholar
  15. Kivelson, M.G., Wang, Z., Joy, S., Khurana, K. K., Polanskey, C., Southwood, D. J., et al.: 1995, Adv. Space Res. 16, 59.CrossRefADSGoogle Scholar
  16. Kührt, E., and Keller, H. U.: 1994, Icarus 109, 121.CrossRefADSGoogle Scholar
  17. Kührt, E.: 2002, Earth, Moon Planets 90, 61.CrossRefADSGoogle Scholar
  18. Lazarus, A. J., Steinberg, J. T., and McNutt, R. L.: 1993, A Low Mass Faraday Cup Experiment for the Solar Wind. Proceedings of the Small Instrument Workshop held 29–31 March, 1993 in Pasadena, CA. Edited by B. T. Tsurutani. Washington, DC: National Aeronautics and Space Division, p. 3.Google Scholar
  19. Mäkinen, J. T. T.: 2004, Water production rate of cornet 67P/Churyumov-Gerasimenko, Kluwer, The New Rosetta Targets, 61.Google Scholar
  20. Motschmann, U., and Kührt, E.: 2006, Interaction of the solar wind with weak obstacles: Hybrid simulations for weak comets and Mars, Space Sci. Rev., (in press).Google Scholar
  21. Nübold, H., and Glassmeier, K. H.: 1999, Adv. Space Res. 24(9), 1163.CrossRefADSGoogle Scholar
  22. Nübold, H., and Glassmeier, K. H.: 2000, Icarus 144, 149.CrossRefADSGoogle Scholar
  23. Nuth, J. A. III, Berg, O., Faris, J., and Wasilewski, P.: 1994, Icarus 107, 155.CrossRefADSGoogle Scholar
  24. Richter, I., Brinza, D. E., Cassel, M., Glassmeier, K. H., Kuhnke, F., Musmann, G., et al.: 2001, Geophys. Res. Lett. 28, 1913.CrossRefADSGoogle Scholar
  25. Simon, S., Bagdonat, T., Motschmann, U., Glassmeier, K. H.: 2006, Ann. Geophys., 24, in press.Google Scholar
  26. Sugiura, N., and Strangway, D. W.: 1998, In J. F. Kerridge and M. S. Matthews (Eds.) Magnetic Studies of Meteorites, Meteorites and the Early Solar System, Univ. Arizona Press, Tucson USA pp. 595.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • H. U. Auster
    • 1
    Email author
  • I. Apathy
    • 2
  • G. Berghofer
    • 3
  • A. Remizov
    • 4
    • 7
  • R. Roll
    • 4
  • K. H. Fornacon
    • 1
  • K. H. Glassmeier
    • 1
  • G. Haerendel
    • 6
  • I. Hejja
    • 2
  • E. Kührt
    • 9
  • W. Magnes
    • 3
  • D. Moehlmann
    • 9
  • U. Motschmann
    • 5
  • I. Richter
    • 1
  • H. Rosenbauer
    • 4
  • C. T. Russell
    • 8
  • J. Rustenbach
    • 4
    • 6
  • K. Sauer
    • 4
  • K. Schwingenschuh
    • 3
  • I. Szemerey
    • 4
  • R. Waesch
    • 9
  1. 1.Institut für Geophysik und Extraterrestrische Physik der Technischen Universität BraunschweigBraunschweigGermany
  2. 2.KFKI Budapest, AEKIBudapestHungary
  3. 3.Space Research Institute GrazGrazAustria
  4. 4.MPS LindauKatlenburg-LindauGermany
  5. 5.Institut für TheoretischePhysik der Technischen Universität BraunschweigBraunschweigGermany
  6. 6.MPE Garching GiessenbachstrasseGarchingGermany
  7. 7.IKI MoscowMoscowRussia
  8. 8.IGPP at UCLA Los AngelesCaliforniaUSA
  9. 9.DLR, Institut für PlanetenforschungBerlinGermany

Personalised recommendations