Advertisement

Space Science Reviews

, Volume 128, Issue 1–4, pp 697–712 | Cite as

RPC-IES: The Ion and Electron Sensor of the Rosetta Plasma Consortium

  • J. L. Burch
  • R. Goldstein
  • T. E. Cravens
  • W. C. Gibson
  • R. N. Lundin
  • C. J. Pollock
  • J. D. Winningham
  • D. T. Young
Article

Abstract

The ion and electron sensor (IES) is part of the Rosetta Plasma Consortium (RPC). The IES consists of two electrostatic plasma analyzers, one each for ions and electrons, which share a common entrance aperture. Each analyzer covers an energy/charge range from 1 eV/e to 22 keV/e with a resolution of 4%. Electrostatic deflection is used at the entrance aperture to achieve a field of view of 90°× 360° (2.8π sr). Angular resolution is 5°× 22.5° for electrons and 5°× 45° for ions with the sector containing the solar wind being further segmented to 5°× 5°. The three-dimensional plasma distributions obtained by IES will be used to investigate the interaction of the solar wind with asteroids Steins and Lutetia and the coma and nucleus of comet 67P/Churyumov–Gerasimenko (CG). In addition, photoelectron spectra obtained at these bodies will help determine their composition.

Keywords

comet 67P/Churyumov–Gerasimenko solar wind–comet interaction plasma analyzer solar wind asteroid interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cravens, T. E.: 1991, in Newburn, R. L. Jr., et al. (eds.), Comets in the Post-Halley Era, Kluwer Academic Publishers, Norwell, MA, p. 1211.Google Scholar
  2. Cravens, T. E., and Gombosi, T. I.: 2004, Adv. Space Res. 33, 1968.CrossRefADSGoogle Scholar
  3. Cravens, T. E., Kozyra, J. U., Nagy, A. F., Gombosi, T. I., and Kurtz, M.: 1987, J. Geophys. Res. 92, 7341.ADSCrossRefGoogle Scholar
  4. Flammer, K. R.: 1991, in Newburn, R. L., Jr., et al. (eds.), Comets in the Post-Halley Era, Vol. 2, Kluwer Academic Publishers, Drodrecht, p. 1125.Google Scholar
  5. Gan, L., and Cravens, T. E.: 1990, J. Geophys. Res. 95, 6285.ADSGoogle Scholar
  6. Goldstein, R., et al.: 1994, J. Geophys. Res. 19, 255.Google Scholar
  7. Gombosi, T. I., Nagy, A. F., and Cravens, T. E.: 1986, Rev. Geophys. 24, 667.ADSGoogle Scholar
  8. Krankowksy, D., et al.: 1986, Nature 321, 326.CrossRefADSGoogle Scholar
  9. Trotignon, J. G., et al.: 1999, Adv. Space Res. 24(9), 1149.CrossRefADSGoogle Scholar
  10. Young, D. T., Bame, S. J., Thomsen, M. F., Martin, R. H., Burch, J. L., Marshall, J. A., et al.: 1988, Rev. Sci. Instrum. 59, 743.CrossRefADSGoogle Scholar
  11. Young, D. T., et al.: 2004, Icarus 167, 80–88.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • J. L. Burch
    • 1
  • R. Goldstein
    • 1
  • T. E. Cravens
    • 2
  • W. C. Gibson
    • 1
  • R. N. Lundin
    • 3
  • C. J. Pollock
    • 1
  • J. D. Winningham
    • 1
  • D. T. Young
    • 1
  1. 1.Southwest Research InstituteSan AntonioUSA
  2. 2.Department of Physics and AstronomyUniversity of KansasLawrenceUSA
  3. 3.Swedish Institute of Space PhysicsKirunaSweden

Personalised recommendations