Space Science Reviews

, Volume 128, Issue 1–4, pp 363–381 | Cite as

Ptolemy – an Instrument to Measure Stable Isotopic Ratios of Key Volatiles on a Cometary Nucleus

  • I. P. Wright
  • S. J. Barber
  • G. H. Morgan
  • A. D. Morse
  • S. Sheridan
  • D. J. Andrews
  • J. Maynard
  • D. Yau
  • S. T. Evans
  • M. R. Leese
  • J. C. Zarnecki
  • B. J. Kent
  • N. R. Waltham
  • M. S. Whalley
  • S Heys
  • D. L. Drummond
  • R. L. Edeson
  • E. C. Sawyer
  • R. F. Turner
  • C. T. Pillinger
Article

Abstract

A fundamental goal of cometary studies is to determine the exact relationship between these bodies and the Solar System – the question(s) can be summarised as follows: did comets originate during the same events that spawned the Sun and planets, are they more primitive bodies that record a pre-solar history, or are they interstellar materials collected in relatively more recent times? Now, whatever the origin of comets, it is entirely possible that they could, in part, contain interstellar or pre-solar components – indeed, it seems rather likely in light of the fact that primitive meteorites contain such entities. These particular components are likely to be refractory (dust, macromolecular organic complexes, etc.). Of more relevance to the issues above are the volatile constituents, which make up the bulk of a comet's mass. Since these materials, by their very nature, volatilise during perihelion passage of a comet they can, in some instances, be detected and measured spectroscopically. Perhaps the most useful species for isotopic investigations are C2, HCN and CN. Unfortunately, spectroscopic measurements can only currently be made with accuracies of ±10 to ±20%. As such it is very often not practical to conclude anything further than the fact that isotopic measurements are compatible with ‘`solar’' values, which tends to imply an origin from the margins of the solar accretion disk. But there is another problem with the spectroscopic measurements – since these are made on gaseous species in the coma (and relatively minor species at that) it is impossible to be certain that these represent the true nuclear values. In other words, if the processes of sublimation, active jetting, and photochemistry in the coma impart isotopic fractionation, the spectroscopic measurements could give a false impression of the true isotope ratios. What is required is an experiment capable of measuring isotopic ratios at the very surface of a comet. Herein we describe the Ptolemy instrument, which is included on the Philae lander as part of the Rosetta mission to 67P/Churyumov-Gerasimenko. The major objective of Ptolemy is a detailed appraisal of the nature and isotopic compositions of all materials present at the surface of a comet.

Keywords

Rosetta Philae comets stable isotope ratios gas chromatography mass spectrometry ion trap 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barber, S. J.: 1998, Development of a quadrupole ion trap mass spectrometer for the determination of stable isotope ratios: application to a space-flight opportunity. PhD Thesis, The Open University, UK.Google Scholar
  2. Balsiger, H., Altwegg, K., Arijis, E., Bertaux, J.-L., Berthelier, J.-J., Bochsler, P., Carignan, G. R., Eberhardt, P., Fisk, L. A., Fuselier, S. A., Ghielmetti, A. G., Gliem, F., Gombosi, T. I., Kopp, E., Korth, A., Livi, S., Mazelle, C., Rème, H., Sauvard, J. A., Shelley, E. G., Waite, J. H., Wilken, B., Woch, J., Wollnik, H., Wurz, P., and Young, D. T.: 1998, Adv. Space Res. 21, 1527–1535.CrossRefADSGoogle Scholar
  3. Bradley, J. P. and Brownlee, D. E.: 1986, Science 231, 542–544.CrossRefGoogle Scholar
  4. Brownlee, D. E.: 1985, Ann. Rev. Earth Planet. Sci. 13, 147–173.Google Scholar
  5. Goesmann, F., Rosenbauer, H., Roll, R., Szopa, C., Raulin, F., Sternberg, R., Israel, G., Meierhenrich, U., Thiemann, W., and Munoz-Caro, G.: 2006, COSAC, the COmetary SAmpling and Composition experiment on Philae. doi: 10.1007/s11214-006-9000-6.Google Scholar
  6. Grün, E., and Jessberger, E. K.: 1990, Dust. In: Huebner, W. F. (ed.), Physics and Chemistry of Comets, Springer-Verlag, Berlin, pp. 115–176.Google Scholar
  7. Hall, D. N. B.: 1973, Ap. J. 182, 977–982.CrossRefADSGoogle Scholar
  8. Jaworski, J. A. and Tatum, J. B.: 1991, Astrophysical J. 377(1), 306–317.CrossRefADSGoogle Scholar
  9. Jessberger, E. K.: 1989, Meteoritics 24, 281.ADSGoogle Scholar
  10. Jewitt, D. C., Matthews, H. E., Owen, T., and Meier, R.: 1997, Science 278, 90–93.CrossRefADSGoogle Scholar
  11. Kerridge, S. J., Muirhead, B. K., Neugebauer, M., Mauritz, A., TanWang, G., Sabahi, D., Green, J. R., Grimes, J., Moura, D. J. P., Bonneau, F., Chaffaut, F. X., Rangeard, P., Rocard, F., and Bibring, J. P.: 1997, Acta Astronautica 40, 585–595.CrossRefADSGoogle Scholar
  12. Kleine, M., Wyckoff, S., Wehinger, P. A., and Peterson, B. A.: 1995, Astrophysical J. 439(2), 1021–1033.CrossRefADSGoogle Scholar
  13. Lis, D., Gardner, M., Phillips, T. G., Brocklee-Morvan, D., Biver, N., Crovoisier, J., and Colom, P.: 1997, Comet A/1995 O1. IAU Circular, 6566.Google Scholar
  14. McKeegan, K. D.: 1987, Science 237, 1468–1471.CrossRefADSGoogle Scholar
  15. McKeegan K. D., Walker R. M., and Zinner E.: 1985, Geochim. Cosmochim. Acta. 49, 1971–1987.CrossRefADSGoogle Scholar
  16. Messenger, S. and Walker, R. M.: 1998, Lunar Planet. Sci. 1906.pdf.Google Scholar
  17. Neugebauer, M. and Bibring, J.-P.: 1998, Adv. Space Res. 21, 1567–1575.CrossRefADSGoogle Scholar
  18. Solc, M., Vanysek, V., and Kissel, J.: 1987, Astron. Astrophys. 187, 385–387.ADSGoogle Scholar
  19. Thomas, K. L., Blandford, G. E., Keller, L. P., Klöck, W., and McKay, D. S.: 1993, Geochim. Cosmochim. Acta 57, 1551–1566.CrossRefADSGoogle Scholar
  20. Urey, H. C.: 1947, J. Chem. Soc. 562–581.Google Scholar
  21. Verdant, M. and Schwehm, G. H.: 1998, ESA Bull. 93, 38–50.ADSGoogle Scholar
  22. Weissman, P.: 1997, Lunar Planet. Sci. XXVIII, 1527.Google Scholar
  23. Wilson, T. L. and Rood, R. J.: 1994, Ann. Rev. Astron. Astrophys. 32, 191–226.CrossRefADSGoogle Scholar
  24. Wright, I. P. and Pillinger, C. T.: 1998, Adv. Space Res. 21, 1537–1545.CrossRefADSGoogle Scholar
  25. Wyckoff, S., Lindholm, E., Wehinger, P. A., Peterson, B. A., Zucconi, J.-M., and Festou, M. C.: 1989, Ap. J. 339, 488–500.CrossRefADSGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • I. P. Wright
    • 1
  • S. J. Barber
    • 1
  • G. H. Morgan
    • 1
  • A. D. Morse
    • 1
  • S. Sheridan
    • 1
  • D. J. Andrews
    • 1
  • J. Maynard
    • 1
  • D. Yau
    • 1
  • S. T. Evans
    • 1
  • M. R. Leese
    • 1
  • J. C. Zarnecki
    • 1
  • B. J. Kent
    • 2
  • N. R. Waltham
    • 2
  • M. S. Whalley
    • 2
  • S Heys
    • 2
  • D. L. Drummond
    • 2
  • R. L. Edeson
    • 2
  • E. C. Sawyer
    • 2
  • R. F. Turner
    • 2
  • C. T. Pillinger
    • 1
  1. 1.Planetary and Space Sciences Research InstituteOpen UniversityMilton KeynesEngland
  2. 2.Space Science DepartmentRutherford Appleton LaboratoryOxfordEngland

Personalised recommendations