Space Science Reviews

, Volume 128, Issue 1–4, pp 745–801 | Cite as

Rosina – Rosetta Orbiter Spectrometer for Ion and Neutral Analysis

  • H. Balsiger
  • K. Altwegg
  • P. Bochsler
  • P. Eberhardt
  • J. Fischer
  • S. Graf
  • A. Jäckel
  • E. Kopp
  • U. Langer
  • M. Mildner
  • J. Müller
  • T. Riesen
  • M. Rubin
  • S. Scherer
  • P. Wurz
  • S. Wüthrich
  • E. Arijs
  • S. Delanoye
  • J. De Keyser
  • E. Neefs
  • D. Nevejans
  • H. Rème
  • C. Aoustin
  • C. Mazelle
  • J.-L. Médale
  • J. A. Sauvaud
  • J.-J. Berthelier
  • J.-L. Bertaux
  • L. Duvet
  • J.-M. Illiano
  • S. A. Fuselier
  • A. G. Ghielmetti
  • T. Magoncelli
  • E. G. Shelley
  • A. Korth
  • K. Heerlein
  • H. Lauche
  • S. Livi
  • A. Loose
  • U. Mall
  • B. Wilken
  • F. Gliem
  • B. Fiethe
  • T. I. Gombosi
  • B. Block
  • G. R. Carignan
  • L. A. Fisk
  • J. H. Waite
  • D. T. Young
  • H. Wollnik
Article

Abstract

The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) will answer important questions posed by the mission’s main objectives. After Giotto, this will be the first time the volatile part of a comet will be analyzed in situ. This is a very important investigation, as comets, in contrast to meteorites, have maintained most of the volatiles of the solar nebula. To accomplish the very demanding objectives through all the different phases of the comet’s activity, ROSINA has unprecedented capabilities including very wide mass range (1 to >300 amu), very high mass resolution (mm > 3000, i.e. the ability to resolve CO from N2 and 13C from 12CH), very wide dynamic range and high sensitivity, as well as the ability to determine cometary gas velocities, and temperature. ROSINA consists of two mass spectrometers for neutrals and primary ions with complementary capabilities and a pressure sensor. To ensure that absolute gas densities can be determined, each mass spectrometer carries a reservoir of a calibrated gas mixture allowing in-flight calibration. Furthermore, identical flight-spares of all three sensors will serve for detailed analysis of all relevant parameters, in particular the sensitivities for complex organic molecules and their fragmentation patterns in our electron bombardment ion sources.

Keywords

comet coma composition mass spectrometry Rosetta 

Abbreviations

ADC

analogue-to-digital converter

ASP

acceleration supply pack

CASYMIR

calibration system for the mass spectrometer instrument ROSINA

CEM

channel electron multiplier

COPS

comet pressure sensor

DFMS

double focusing magnetic mass spectrometer

DPU

data processing unit

EGSE

electrical ground support equipment

ESA

electroStatic analyzer

ETS

equivalent time sampling

ETSL

equivalent time sampling light

FC

Faraday cup

FDP

floating detector pack

FEC

filament emission controller

FIFO

first in first out

FM

flight model

FOV

field of view

FS

flight spare model

GCU

gas calibration unit

HV

high voltage

IMS

ion mass spectrometer on Giotto

LEDA

linear electron detector array

LVPS

low voltage power supply

MCP

multichannel plate

MCP

main controller

MEP

main electronics pack

MLI

multiLayer insulation

MS

mass spectrometer

NMS

neutral mass spectrometer on Giotto

RDP

remote detector pack

ROSINA

Rosetta Orbiter Spectrometer for Ion and Neutral Analysis

RTOF

reflectron type time-of-flight mass spectrometer

SEL

single event latch-up

SEU

single event upset

TDC

time-to-digital converter

TIMAS

toroidal imaging mass angle spectrograph

TOF

time of flight

UHV

ultra-high vacuum

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balsiger, H., et al.: 1988, Scientific American, 96.Google Scholar
  2. Baptist, R., and Bieth, C.: 1996, J. Vac. Sci. Tecnol. B 14(3), 2119.CrossRefGoogle Scholar
  3. Bermann, A.: 1985, Total Pressure Measurements in Vacuum Technology, Academic Press, San Deigo, Chapter 8, p. 355.Google Scholar
  4. Berthelier, J. J., Illiano, J. M., Nevejans, D., Neefs, E., Arijs, E., and Schoon, N.: 2002, Int. J. Mass Spectr. 215(1–3), 89.CrossRefGoogle Scholar
  5. Constancias, C.: 1998, PhD thesis, Université de Grenoble, Saint Martin d'Heres, France.Google Scholar
  6. Eberhardt, P.: 1999, Space Sci. Rev. 90, 45.CrossRefADSGoogle Scholar
  7. Graf, S., Altwegg, K., Balsiger, H., Jäckel, A., Kopp, E., Langer, U., Luithardt, W., Westermann, C., and Wurz, P.: 2004, J. Geophys. Res. 109, E07S08, doi: 10.1029/2003JE002188.Google Scholar
  8. Hohl, M., Wurz, P., Scherer, S., Altwegg, K., and Balsiger, H.: 1999, Int. J. Mass Spectr. 188, 189.CrossRefGoogle Scholar
  9. Kissel, J., et al.: 1986, Nature 321, 336.CrossRefADSGoogle Scholar
  10. Krankowsky, D., et al.: 1981, Scientific and Experimental Aspects of the Giotto Mission, 3–7 (ESA SP-169, 1981), p. 127.Google Scholar
  11. Irvine, W.: 1999, Space Sci Rev. 99(1–2), 203.Google Scholar
  12. Levine, J. D.: 1996, J. Vac. Sci. Technol. B 14(3), 2008.CrossRefGoogle Scholar
  13. Mamyrin, B. A., Karataev, V. I., Shmikk, D. V., and Zagulin, V. A.: 1973, Sov. Phys. JETP 37(1), 45.ADSGoogle Scholar
  14. Mattauch, J., and Herzog, R.: 1934, Z. Physik 89, 786–795.CrossRefADSGoogle Scholar
  15. Matsuda, H., and Fujita, Y.: 1975, Int. J. Mass Spectr. 16, 395.CrossRefGoogle Scholar
  16. Meyer, R.: 1966, Le vide, 282, 478.Google Scholar
  17. Nevejans, D., Neefs, E., Kavadias, S., Merken, P., Van Hoof, C., Gramegna, G., Bastiaens, J., and Dierickx, B.: 2000, Rev. Sci. Instrum. 71(11), 4300.CrossRefADSGoogle Scholar
  18. Nevejans, D., Neefs, E., Kavadias, S., Merken, P., and Van Hoof, C.: 2002, Int. J. Mass Spectr. 215(1–3), 77.CrossRefGoogle Scholar
  19. Redhead, P. A.: 1966, J. Vacuum Sci. Tecnol. 13, 173.CrossRefGoogle Scholar
  20. Reed, I., and Solomon, G.: 1960, J. Soc. Ind. Appl. Math. [SIAM J.] 8, 300–304.Google Scholar
  21. Rice, R. F. : 1991, JPL Publication 91-3, Jet Propulsion Laboratories, November 1991.Google Scholar
  22. Shelley, E. G., et al.: 1995, Space Sci. Rev. 71(1–4), 497.CrossRefGoogle Scholar
  23. Siegmund, O. H. W., Kromer, K. E., Wurz, P., Schletti, R., and Cottard, H.: 2000, Proc. SPIE Int. Soc. Opt. Eng. 4140, 229.ADSGoogle Scholar
  24. Scherer, S., et al.: 2005, Int. J. Mass Spectr., in press.Google Scholar
  25. Schletti, R., Wurz, P., Scherer, S., and Siegmund, O. H.: 2001, Rev. Sci. Instr. 72, 3.CrossRefGoogle Scholar
  26. Temple, D.: 1999, Mater. Sci. Eng. R24, 185.Google Scholar
  27. Westermann, C., Luithardt, W., Kopp, E., Koch, T., Liniger, R., Hofstetter, H., Fischer, J., Altwegg, K., and Balsiger, H.: 2001, Meas. Sci. Technol. 12(9), 1594.CrossRefADSGoogle Scholar
  28. Wiley, W. C., and McLaren, I. H.: 1995, Rev. Sci. Instr. 26(12), 1150.CrossRefADSGoogle Scholar
  29. Wurz, P., and Gubler, L.: 1994, Rev. Sci. Instr. 65, 871.CrossRefADSGoogle Scholar
  30. Wurz, P., and Gubler, L.: 1996, Rev. Sci. Instr. 67, 1790.CrossRefADSGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2007

Authors and Affiliations

  • H. Balsiger
    • 1
  • K. Altwegg
    • 1
  • P. Bochsler
    • 1
  • P. Eberhardt
    • 1
  • J. Fischer
    • 1
  • S. Graf
    • 1
  • A. Jäckel
    • 1
  • E. Kopp
    • 1
  • U. Langer
    • 1
  • M. Mildner
    • 1
  • J. Müller
    • 1
  • T. Riesen
    • 1
  • M. Rubin
    • 1
  • S. Scherer
    • 1
  • P. Wurz
    • 1
  • S. Wüthrich
    • 1
  • E. Arijs
    • 2
  • S. Delanoye
    • 2
  • J. De Keyser
    • 2
  • E. Neefs
    • 2
  • D. Nevejans
    • 2
  • H. Rème
    • 3
  • C. Aoustin
    • 3
  • C. Mazelle
    • 3
  • J.-L. Médale
    • 3
  • J. A. Sauvaud
    • 3
  • J.-J. Berthelier
    • 4
  • J.-L. Bertaux
    • 4
  • L. Duvet
    • 4
  • J.-M. Illiano
    • 4
  • S. A. Fuselier
    • 5
  • A. G. Ghielmetti
    • 5
  • T. Magoncelli
    • 5
  • E. G. Shelley
    • 5
  • A. Korth
    • 6
  • K. Heerlein
    • 6
  • H. Lauche
    • 6
  • S. Livi
    • 6
  • A. Loose
    • 6
  • U. Mall
    • 6
  • B. Wilken
    • 6
  • F. Gliem
    • 7
  • B. Fiethe
    • 7
  • T. I. Gombosi
    • 8
  • B. Block
    • 8
  • G. R. Carignan
    • 8
  • L. A. Fisk
    • 8
  • J. H. Waite
    • 9
  • D. T. Young
    • 9
  • H. Wollnik
    • 10
  1. 1.Physikalisches InstitutUniversität BernBernSwitzerland
  2. 2.Belgian Institute for Space Aeronomy (BIRA)BrusselsBelgium
  3. 3.CESRToulouse cedex 4France
  4. 4.IPSLSaint MaurFrance
  5. 5.Lockheed Martin Advanced Technology CenterPalo AltoU.S.A.
  6. 6.MPI für SonnensystemforschungKatlenburg-LindauGermany
  7. 7.Technische UniversitätBraunschweigGermany
  8. 8.University of Michigan, Space Physics Research LaboratoryAnn ArborU.S.A.
  9. 9.Southwest Research InstituteSan AntonioU.S.A.
  10. 10.University of Giessen, Physik InstitutGiessenGermany

Personalised recommendations