Rosina – Rosetta Orbiter Spectrometer for Ion and Neutral Analysis
- 915 Downloads
- 159 Citations
Abstract
The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) will answer important questions posed by the mission’s main objectives. After Giotto, this will be the first time the volatile part of a comet will be analyzed in situ. This is a very important investigation, as comets, in contrast to meteorites, have maintained most of the volatiles of the solar nebula. To accomplish the very demanding objectives through all the different phases of the comet’s activity, ROSINA has unprecedented capabilities including very wide mass range (1 to >300 amu), very high mass resolution (m/Δ m > 3000, i.e. the ability to resolve CO from N2 and 13C from 12CH), very wide dynamic range and high sensitivity, as well as the ability to determine cometary gas velocities, and temperature. ROSINA consists of two mass spectrometers for neutrals and primary ions with complementary capabilities and a pressure sensor. To ensure that absolute gas densities can be determined, each mass spectrometer carries a reservoir of a calibrated gas mixture allowing in-flight calibration. Furthermore, identical flight-spares of all three sensors will serve for detailed analysis of all relevant parameters, in particular the sensitivities for complex organic molecules and their fragmentation patterns in our electron bombardment ion sources.
Keywords
comet coma composition mass spectrometry RosettaAbbreviations
- ADC
analogue-to-digital converter
- ASP
acceleration supply pack
- CASYMIR
calibration system for the mass spectrometer instrument ROSINA
- CEM
channel electron multiplier
- COPS
comet pressure sensor
- DFMS
double focusing magnetic mass spectrometer
- DPU
data processing unit
- EGSE
electrical ground support equipment
- ESA
electroStatic analyzer
- ETS
equivalent time sampling
- ETSL
equivalent time sampling light
- FC
Faraday cup
- FDP
floating detector pack
- FEC
filament emission controller
- FIFO
first in first out
- FM
flight model
- FOV
field of view
- FS
flight spare model
- GCU
gas calibration unit
- HV
high voltage
- IMS
ion mass spectrometer on Giotto
- LEDA
linear electron detector array
- LVPS
low voltage power supply
- MCP
multichannel plate
- MCP
main controller
- MEP
main electronics pack
- MLI
multiLayer insulation
- MS
mass spectrometer
- NMS
neutral mass spectrometer on Giotto
- RDP
remote detector pack
- ROSINA
Rosetta Orbiter Spectrometer for Ion and Neutral Analysis
- RTOF
reflectron type time-of-flight mass spectrometer
- SEL
single event latch-up
- SEU
single event upset
- TDC
time-to-digital converter
- TIMAS
toroidal imaging mass angle spectrograph
- TOF
time of flight
- UHV
ultra-high vacuum
Preview
Unable to display preview. Download preview PDF.
References
- Balsiger, H., et al.: 1988, Scientific American, 96.Google Scholar
- Baptist, R., and Bieth, C.: 1996, J. Vac. Sci. Tecnol. B 14(3), 2119.CrossRefGoogle Scholar
- Bermann, A.: 1985, Total Pressure Measurements in Vacuum Technology, Academic Press, San Deigo, Chapter 8, p. 355.Google Scholar
- Berthelier, J. J., Illiano, J. M., Nevejans, D., Neefs, E., Arijs, E., and Schoon, N.: 2002, Int. J. Mass Spectr. 215(1–3), 89.CrossRefGoogle Scholar
- Constancias, C.: 1998, PhD thesis, Université de Grenoble, Saint Martin d'Heres, France.Google Scholar
- Eberhardt, P.: 1999, Space Sci. Rev. 90, 45.CrossRefADSGoogle Scholar
- Graf, S., Altwegg, K., Balsiger, H., Jäckel, A., Kopp, E., Langer, U., Luithardt, W., Westermann, C., and Wurz, P.: 2004, J. Geophys. Res. 109, E07S08, doi: 10.1029/2003JE002188.Google Scholar
- Hohl, M., Wurz, P., Scherer, S., Altwegg, K., and Balsiger, H.: 1999, Int. J. Mass Spectr. 188, 189.CrossRefGoogle Scholar
- Kissel, J., et al.: 1986, Nature 321, 336.CrossRefADSGoogle Scholar
- Krankowsky, D., et al.: 1981, Scientific and Experimental Aspects of the Giotto Mission, 3–7 (ESA SP-169, 1981), p. 127.Google Scholar
- Irvine, W.: 1999, Space Sci Rev. 99(1–2), 203.Google Scholar
- Levine, J. D.: 1996, J. Vac. Sci. Technol. B 14(3), 2008.CrossRefGoogle Scholar
- Mamyrin, B. A., Karataev, V. I., Shmikk, D. V., and Zagulin, V. A.: 1973, Sov. Phys. JETP 37(1), 45.ADSGoogle Scholar
- Mattauch, J., and Herzog, R.: 1934, Z. Physik 89, 786–795.CrossRefADSGoogle Scholar
- Matsuda, H., and Fujita, Y.: 1975, Int. J. Mass Spectr. 16, 395.CrossRefGoogle Scholar
- Meyer, R.: 1966, Le vide, 282, 478.Google Scholar
- Nevejans, D., Neefs, E., Kavadias, S., Merken, P., Van Hoof, C., Gramegna, G., Bastiaens, J., and Dierickx, B.: 2000, Rev. Sci. Instrum. 71(11), 4300.CrossRefADSGoogle Scholar
- Nevejans, D., Neefs, E., Kavadias, S., Merken, P., and Van Hoof, C.: 2002, Int. J. Mass Spectr. 215(1–3), 77.CrossRefGoogle Scholar
- Redhead, P. A.: 1966, J. Vacuum Sci. Tecnol. 13, 173.CrossRefGoogle Scholar
- Reed, I., and Solomon, G.: 1960, J. Soc. Ind. Appl. Math. [SIAM J.] 8, 300–304.Google Scholar
- Rice, R. F. : 1991, JPL Publication 91-3, Jet Propulsion Laboratories, November 1991.Google Scholar
- Shelley, E. G., et al.: 1995, Space Sci. Rev. 71(1–4), 497.CrossRefGoogle Scholar
- Siegmund, O. H. W., Kromer, K. E., Wurz, P., Schletti, R., and Cottard, H.: 2000, Proc. SPIE Int. Soc. Opt. Eng. 4140, 229.ADSGoogle Scholar
- Scherer, S., et al.: 2005, Int. J. Mass Spectr., in press.Google Scholar
- Schletti, R., Wurz, P., Scherer, S., and Siegmund, O. H.: 2001, Rev. Sci. Instr. 72, 3.CrossRefGoogle Scholar
- Temple, D.: 1999, Mater. Sci. Eng. R24, 185.Google Scholar
- Westermann, C., Luithardt, W., Kopp, E., Koch, T., Liniger, R., Hofstetter, H., Fischer, J., Altwegg, K., and Balsiger, H.: 2001, Meas. Sci. Technol. 12(9), 1594.CrossRefADSGoogle Scholar
- Wiley, W. C., and McLaren, I. H.: 1995, Rev. Sci. Instr. 26(12), 1150.CrossRefADSGoogle Scholar
- Wurz, P., and Gubler, L.: 1994, Rev. Sci. Instr. 65, 871.CrossRefADSGoogle Scholar
- Wurz, P., and Gubler, L.: 1996, Rev. Sci. Instr. 67, 1790.CrossRefADSGoogle Scholar