Space Science Reviews

, Volume 116, Issue 1–2, pp 471–487 | Cite as

Exo-Astrobiological Aspects of Europa and Titan: From Observations to Speculations

  • FranÇois RaulinEmail author


By extrapolating what we know on the origins of life on Earth, and in particular on the chemical processes which gave rise to the first living system, Europa and Titan appear as two major targets for studies of exo/astrobiology in the outer solar system. With the likely presence of water oceans relatively close to its surface, coupled to possible sources of organics, the emergence and sustaining of life on Europa seems possible. On Titan, it cannot be ruled out. But the main exobiological interest of the largest satellite of Saturn is the presence of a complex organic chemistry which shows many similarities with the prebiotic chemistry which allowed the emergence of life on Earth.


Europa Titan exobiology astrobiology organic chemistry prebiotic chemistry biological signatures life 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbas, O., and Schulze-Makuch, D.: 2002, ‘Acetylene-based pathways for prebiotic evolution on Titan’, ESA SP-518, 345–348.Google Scholar
  2. Artemieva, N. and Lunine, J.: 2003, ‘Cratering on Titan: impact melt, ejecta, and the fate of surface organics’, Icarus 164, 471–480.CrossRefGoogle Scholar
  3. Benner, S.: 2002, ‘Weird life: chances versus necessity’, Communication at ‘Weird Life’ planning session for NRC Committee on the origins and evolution of life, National Academies of Sciences, USA, Bernard, J.-M., Coll, P., and Raulin, F.: 2002, ‘Variation of C/N and C/H ratios of Titan’s aerosols analogues’, Proc. 2d European Workshop on Exo-/Astro-Biology, ESA SP-518, 623–625.
  4. Bernard, J.-M., Coll, P., Coustenis, A., and Raulin, F.: 2003, ‘Experimental simulation of Titan’s atmosphere detection of ammonia and ethylene oxide’, Planet. Space Sci. 51, 1003–1011.CrossRefGoogle Scholar
  5. Brack, A. (ed.): 1998, The Molecular Origins of Life: Assembling Pieces of the Puzzle, Cambridge, New York, Sydney: Cambridge University Press.Google Scholar
  6. Campbell, D.B., Black, G.J., Carter, L.M., and Ostro, S.J.: 2003, ‘Radar evidence for liquid surfaces on Titan’, Science 302, 431–434.CrossRefPubMedGoogle Scholar
  7. Chela-Flores, J.: 1998, ‘Possible degree of evolution of solar-system microorganisms’, in J. Chela- Flores and F. Raulin (eds.), Exobiology: Matter, Energy and Information in the Origin and Evolution of Life in the Universe, Kluwer Academic Publishers, pp. 229–234.Google Scholar
  8. Chyba, C.F. and Phillips, C.B.: 2002, ‘Europa as an abode of life’, Origins of Life and Evolution of the Biosphere 32, 47–68.CrossRefPubMedGoogle Scholar
  9. Clarke, D.W. and Ferris, J.P.: 1997, ‘Titan haze: structure and properties of cyanoacetylene and cyano-acetylene-acetylene photopolymers’, Icarus 127, 158–172.PubMedGoogle Scholar
  10. Coll, P., Coscia, D., Gazeau, M.-C., and Raulin, F.: 1998, ‘Review and latest results of laboratory investigation of Titan’s aerosols’, Origins of Life and Evolution of the Biosphere 28, 195–213.CrossRefPubMedGoogle Scholar
  11. Coll, P., Coscia, D., Smith, N., Gazeau, M.C., Ramirez, S.I., Cernogora, G., Israel, G., and Raulin, F.: 1999a, ‘Experimental laboratory simulation of Titan’s atmosphere: aerosols and gas phase’, Planet. Space Sci. 47, 1331–1340.CrossRefGoogle Scholar
  12. Coll, P., Guillemin, J.C., Gazeau, M.C., and Raulin, F.: 1999b, ‘Report and implications of the first observation of C4N2 in laboratory simulations of Titan’s atmosphere’, Planet. Space Sci. 47, 1433–1440.CrossRefGoogle Scholar
  13. Coll, P., Bernard, J.-M., Navarro-González, R., and Raulin, F.: 2003, ‘Oxirane: an exotic oxygenated organic compound in Titan?’, Astrophys. J. 598, 700–703.CrossRefGoogle Scholar
  14. Ehrenfreund, P., Boon, J.P., Commandeur, J., Sagan, C., Thompson, W.R., and Khare, B.N.: 1995, ‘Analytical pyrolysis experiments of Titan aerosol analogues in preparation for the Cassini-Huygens mission’, Adv. Space Res. 15, 335–342.CrossRefPubMedGoogle Scholar
  15. Ferris, J.P. and Hagan, W.J.: 1984, ‘HCN and chemical evolution: the possible role of cyano compounds in prebiotic synthesis’, Tetrahedron 40, 1093–1120.CrossRefPubMedGoogle Scholar
  16. Fortes, A.D.: 2000, ‘Exobiological implications of a possible ammonia-water ocean inside Titan’, Icarus 146, 444–452.CrossRefGoogle Scholar
  17. Grasset, O., Sotin, C., and Deschamps, F.: 2000, ‘On the internal structure and dynamics of Titan’, Planet. Space Sci. 48, 617–636.CrossRefGoogle Scholar
  18. Haldane, J.B.S.: 1929, The Origin of Life, Rationnalist Annual.Google Scholar
  19. Imanaka, H., Khare, B.N., Elsila, J.E., Bakes, E.L.O., McKay, C.P., Cruikshank, D.P., Sugita, S., Matsui, T., and Zare, R.N.: 2004, ‘Laboratory experiments of Titan tholin formed in cold plasma at various pressures: implications for nitrogen-containing polycyclic aromatic compounds in Titan haze’, Icarus 168, 344–366.CrossRefGoogle Scholar
  20. Kargel, J., Kaye, J., Head, J., Marion, G., Sassen, R., Crowley, J., Ballesteros, O., Grant, S. and Hogenboom, D. : 2000, ‘Europa’s crust and ocean: origin, composition and the prospect for life’, Icarus 148, 226–265.Google Scholar
  21. Khare, B.N., Sagan, C., Arakawa, E.T., Suits, F., Callicott, T.A., and Williams, M.W.: 1984, ‘Optical constants of organic tholins produced in a simulated Titanian atmosphere: from soft X-rays to microwave frequencies’, Icarus 60, 127–137.CrossRefGoogle Scholar
  22. Khare, B.N., Sagan, C., Ogino, H., Nagy, B., Er, C., Schram, K.H., and Arakawa, E.T.: 1986, ‘Amino acids derived from Titan tholins’, Icarus 68, 176–184.CrossRefPubMedGoogle Scholar
  23. Kress, M.E. and McKay, C.P.: 2004, ‘Formation of methane in comet impacts: implications for Earth, Mars, and Titan’, Icarus 168, 475–483.CrossRefGoogle Scholar
  24. Lorenz, R: 2000, ‘Post-Cassini exploration of Titan: science rational and mission concepts’, J. British Interplan. Soc. 53, 218–234.Google Scholar
  25. Lunine, J.I.: 1993, ‘Does Titan have an ocean? A review of current understanding of Titan’s surface’, Rev. Geophys. 31, 133–149.CrossRefGoogle Scholar
  26. McDonald, G.D., Thompson, W.R., Heinrich, M., Khare, B.N., and Sagan, C.: 1994, ‘Chemical investigation of Titan and Triton tholins’, Icarus 108, 137–145.CrossRefPubMedGoogle Scholar
  27. McKay, C.P.: 1996, ‘Elemental composition, solubility, and optical properties of Titan’s organic haze’, Planet. Space Sci. 44, 741–747.CrossRefGoogle Scholar
  28. Melosh, H.J., Ekholm, A.G., Showman, A.P., and Lorenz, R.D.: 2004, ‘The temperature of Europa’s subsurface water ocean’, Icarus 168, 498–502.CrossRefGoogle Scholar
  29. Miller, S.L.: 1953, ‘A production of aminoacids under possible primitive Earth conditions’, Science 117, 528–529.PubMedGoogle Scholar
  30. Miller, S.L.: 1998, ‘The endogenous synthesis of organic compounds’, in A. Brack (ed.), The Molecular Origins of Life: Assembling Pieces of the Puzzle, pp. 59-85, Cambridge University Press, Cambridge, New York, Sydney, pp. 59–85.Google Scholar
  31. Miller, S.L. and Orgel, L.: 1974, The origins of life on the Earth, Prentice Hall, N. Jersey.Google Scholar
  32. Oparin, A.I.: 1938, The Origin of Life, Macmillan, New York.Google Scholar
  33. Oro, J., Squyres, S. W., Reynolds, R.T., and Mills, T.M.: 1992, ‘Europa: prospects for an ocean and exobiological implications’, in G. Carle, D. Schwartz, and J. Huntington (eds.), Exobiology in Solar System Exploration, NASA SP-512, 102–125.Google Scholar
  34. Owen, T.: 2000, ‘On the origin of Titan’s atmosphere’, Planet. Space Sci. 48, 747–752.CrossRefPubMedGoogle Scholar
  35. Ramirez, S.I., Coll, P., Da Silva, A., Navarro-Gonzalez, R., Lafait, J., and Raulin, F.: 2002, ‘Complex refractive index of Titan’s aerosol analogues in the 200–900 nm domain’, Icarus 156, 515–530.CrossRefGoogle Scholar
  36. Raulin, F.: 1990, ‘Prebiotic syntheses of biologically interesting monomers in aqueous solutions: facts and constraints’, J. British Interplanet. Soc. 43, 39–45.Google Scholar
  37. Raulin, F. and Frére, C.: 1989, ‘Gas phase organic syntheses in planetary environments, and the case of Titan’, J. British Interplan. Soc. 42, 411–422.Google Scholar
  38. Raulin, F. and Owen, T.: 2002, ‘Organic chemistry and exobiology on Titan’, Space Sci. Rev. 104, 379–395.CrossRefGoogle Scholar
  39. Raulin, F., Bruston, P., Paillous, P., and Sternberg, R.: 1995, ‘The low temperature organic chemistry of Titan’s geofluid’, Adv. Space Res. 15, 321–333.CrossRefPubMedGoogle Scholar
  40. Reynolds, R., Squyres, S., Colburn, D., and McKay, C.P.: 1983, ‘On the habitability of Europa’, Icarus 56, 246–254.CrossRefGoogle Scholar
  41. Sagan, C. and Khare, B.N.: 1979, ‘Tholins : Organic chemistry of interstellar grains and gas’, Nature 277, 102–107.CrossRefGoogle Scholar
  42. Schulze-Makuch, D. and Irwin, L.N.: 2004, Life in the Universe, Expectations and Constraints, Springer.Google Scholar
  43. Simakov, M.B.: 2001, ‘The possible sites for exobiological activities on Titan’, ESA SP-496, 211–214.Google Scholar
  44. Souchez, R., Jean Baptiste, P., Petit, J.R., Lipenkov, V.Y., and Jouzel, J.: 2002, ‘What is the deepest part of the Vostok ice core is telling us?’, Earth-Science Reviews 60, 131–146.CrossRefGoogle Scholar
  45. Stoker, C.R., Boston, P.J., Mancinelli, R.L., Segal, W., Khare, B. N., and Sagan, C.: 1990, ‘Microbial metabolism of tholins’, Icarus 85, 241–256.CrossRefPubMedGoogle Scholar
  46. Strobel, D.F.: 2005, ‘Photochemistry in outer solar system atmospheres’, Space Sci. Rev., this volume.Google Scholar
  47. Tran, B.N., Joseph, J.C., Ferris, J.P., Persans, P.D., and Chera, J.J.: 2003, ‘Simulation of Titan haze formation using a photochemical flow reactor: The optical constants of the polymer’, Icarus 165, 379–390.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Observatoire de Paris and Université Pierre et Marie CurieMeudonFrance
  2. 2.Laboratoire Interuniversitaire des Systèmes Atmosphériques, LISA-UMR CNRS 7583Universités Paris 7 et Paris 12CréteilFrance

Personalised recommendations