Space Science Reviews

, Volume 116, Issue 1–2, pp 371–397 | Cite as

Radio Wave Emission from the Outer Planets Before Cassini

  • P. ZarkaEmail author
  • W. S. Kurth


We review observations and theories of radio wave emissions from the outer planets. These include radio emissions from the auroral regions and from the radiation belts, low-frequency electromagnetic emissions, and atmospheric lightning. For each of these emissions, we present in more details our knowledge of the Saturn counterpart, as well as expectations for Cassini. We summarize the capabilities of the radio instrument onboard Cassini, observations performed during the Jupiter flyby, and first (remote) observations of Saturn. Open questions are listed along with the specific observations that may bring responses to them. The coordinated observations (from the ground and from space) that would be valuable to perform in parallel to Cassini measurements are briefly discussed. Finally, we outline future missions and perspectives.


radio wave emission giant planets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barbosa, D.D.: 1982, ‘Low-level VLF and LF radio emissions observed at Earth and Jupiter’, Rev. Geophys. 20, 316–334.Google Scholar
  2. Baumback, M.M. and Calvert, W.: 1987, ‘The minimum bandwidth of auroral kilometric radiation’, Geophys. Res. Lett. 14, 119–122.Google Scholar
  3. Bigg, E.K.: 1964, ‘Influence of the satellite Io on Jupiter’s decametric emission’, Nature 203, 1008–1010.Google Scholar
  4. Burke, B.F. and Franklin, K.L.: 1955, ‘Observations of a variable radio source associated with the planet Jupiter’, J. Geophys. Res. 60, 213–217.Google Scholar
  5. Calvert, W.: 1981, ‘The auroral plasma cavity’, Geophys. Res. Lett. 8, 919–921.Google Scholar
  6. Calvert, W.: 1982, ‘A feedback model for the source of auroral kilometric radiation’, J. Geophys. Res. 87, 8199–8214.Google Scholar
  7. Carr, T.D., Desch, M.D., and Alexander, J.K.: 1983, ‘Phenomenology of magnetospheric radio emissions, in A.J. Dessler (ed.), Physics of the Jovian Magnetosphere, Cambridge Univ. Press, New York, pp. 226–284.Google Scholar
  8. Cecconi, B., and Zarka, P.: 2002, ‘Origin of a variable apparent radio period for Saturn’, Magnetospheres of the Outer Planets conference, John Hopkins University, Laurel, MD, USA, 29 July - 2 August, 2002, (abstract).Google Scholar
  9. Cecconi, B., and Zarka, P.: 2004, ‘Direction finding and antenna calibration through analytical inversion of radio measurements performed using a system of 2 or 3 electric dipole wire antennas’, Radio Science, submitted, 2004.Google Scholar
  10. Connerney, J.E.P., Davis, Jr., L., and Chenette, D.L.: 1984, ‘Magnetic field models’, in T. Gehrels and M.S. Matthews (eds.), Saturn, Univ. of Arizona Press, pp. 354–377.Google Scholar
  11. Cook, A.F., II, Duxbury, T.C., and Hunt, G.E.: 1979, ‘Firsts results on Jovian lightning’, Nature 280, 794.CrossRefGoogle Scholar
  12. Cowley, S.H., and Bunce, E.J.: 2001, ‘Origin of the main auroral oval in Jupiter’s coupled magnetosphere-ionosphere system’, Planet. Space Sci. 49, 1067–1088.CrossRefGoogle Scholar
  13. Cowley, S.H., Bunce, E.J., and Prangé, R.: 2004, ‘Saturn’s polar ionospheric flows and their relation to the main auroral oval’, Ann. Geophys. 22, 1379–1394.Google Scholar
  14. de Pater, I.: 2004, ‘LOFAR and Jupiter’s Radio (Synchrotron) emissions’, Planet. Space Sci., in press.Google Scholar
  15. Desch, M.D.: 1982, ‘Evidence for solar wind control of Saturn radio emission’, J. Geophys. Res. 87, 4,549–4,554.Google Scholar
  16. Desch, M.D.: 1994, ‘Jupiter radio bursts and particle acceleration’, Astrophys. J. Suppl. Ser. 90, 541–546.CrossRefGoogle Scholar
  17. Desch, M.D. and Kaiser, M.L.: 1981a, ‘Voyager measurement of the rotation period of Saturn’s magnetic field’, Geophys. Res. Lett. 8, 253–256.Google Scholar
  18. Desch, M.D. and Kaiser, M.L.: 1981b, ‘Saturn’s kilometric radiation – Satellite modulation’, Nature 292, 739–741.CrossRefGoogle Scholar
  19. Desch, M.D. and Kaiser, M.L.: 1990, ‘Upper limit set for level of lightning activity on Titan’, Nature 343, 442–444.CrossRefGoogle Scholar
  20. Desch, M.D., Kaiser, M.L., Zarka, P., Lecacheux, A., Leblanc, Y., Aubier, M., and Ortega-Molina, A.: 1991, ‘Uranus as a Radio Source’, in J.T. Bergstralh, E.D. Miner, and M.S. Matthews (eds.), Uranus, Univ. Arizona Press, 894–925.Google Scholar
  21. Ergun, R.E., et al., ‘FAST satellite wave observations in the AKR source region’, Geophys. Res. Lett. 25, 2061–2064.Google Scholar
  22. Farrell, W.M., Kaiser, M.L., and Desch, M.D.: 1999, ‘A model of the lightning discharge at Jupiter’, Geophys. Res. Lett. 26, 2601–2604, 1999.CrossRefGoogle Scholar
  23. Farrell, W.M., Kaiser, M.L., Kurth, W.S., Desch, M.D., Gurnett, D.A., Hospodarsky, G.B., and Mac- Dowall, R.J.: 2004a, ‘Remote sensing of possible plasma density bubbles in the inner jovian dayside magnetosphere’, J. Geophys. Res., in press.Google Scholar
  24. Farrell, W.M., Lazio, T.J., Zarka, P., Bastian, T., Desch, M.D.: 2004b, ‘The radio search for extrasolar planets with LOFAR’, Planet. Space Sci., in press.Google Scholar
  25. Gallagher, D.L. and D’Angelo, N.: 1981, ‘Correlations between solar wind parameters and auroral kilometric radiation’, Geophys. Res. Lett. 8, 1087–1089.Google Scholar
  26. Galopeau, P. and Zarka, P.: 1992, ‘Reply to the comment by J. E. P. Connerney and M. D. Desch’, J. Geophys. Res. 97, 12,291–12,297.Google Scholar
  27. Galopeau, P. and Lecacheux, A.: 2000, ‘Variations of Saturn’s radio rotation period measured at kilometer wavelengths’, J. Geophys. Res. 105, 13089–13101.CrossRefGoogle Scholar
  28. Galopeau, P., Zarka, P., and Le Quéau, D.: 1989, ‘Theoretical model of Saturn’s kilometric radiation spectrum’, J. Geophys. Res. 94, 8739–8755.Google Scholar
  29. Galopeau, P., Ortega-Molina, A., and Zarka, P.: 1991, ‘Evidence of Saturn’s magnetic field anomaly from SKR high-frequency limit’, J. Geophys. Res. 96, 14,129–14,140.Google Scholar
  30. Galopeau, P., Zarka, P., and Le Quéau, D.: 1995, ‘Source location of SKR: the Kelvin-Helmholtz instability hypothesis’, J. Geophys. Res. 100, 26397–26410.CrossRefGoogle Scholar
  31. Gladstone, G.R., et al.: 2002, ‘A pulsating auroral X-ray hot spot on Jupiter’, Nature 415, 1000–1003.CrossRefPubMedGoogle Scholar
  32. Gurnett, D.A.: 1975, ‘The Earth as a radio source: The non-thermal continuum’, J. Geophys. Res. 80, 2751–2763.Google Scholar
  33. Gurnett, D.A., Shaw, R.R., Anderson, R.R., Kurth, W.S., and Scarf, F.L.: 1979, ‘Whistlers observed by Voyager 1: Detection of lightning on Jupiter’, Geophys. Res. Lett. 6, 511–516.Google Scholar
  34. Gurnett, D.A., Kurth, W.S., and Scarf, F.L.: 1981, ‘Narrowband electromagnetic emissions from Saturn’s magnetosphere’, Nature 292, 733–737.CrossRefGoogle Scholar
  35. Gurnett, D.A., Kurth, W.S., Roux, A., Bolton, S.J., and Kennel, C.F.: 1996, ‘Evidence for a magnetosphere at Ganymede from plasma-wave observations by the Galileo spacecraft’, Nature 384, 535–537.CrossRefGoogle Scholar
  36. Gurnett, D.A., Zarka, P., Manning, R., Kurth, W.S., Hospodarsky, G.B., Averkamp, T.F., Kaiser, M.L., and Farrell, W.M.: 2001, ‘Non-detection at Venus of high-frequency radio signals characteristic of terrestrial lightning’, Nature 409, 313–315.CrossRefPubMedGoogle Scholar
  37. Gurnett, D.A., et al.: 2002, ‘Control of Jupiter’s radio emission and aurorae by the solar wind’, Nature 415, 985–987.CrossRefPubMedGoogle Scholar
  38. Gurnett, D.A., et al.: 2004, ‘The Cassini Radio and Plasma Wave Investigation’, Space Sci. Rev., in press.Google Scholar
  39. Higgins, C.A., Carr, T.D., Reyes, F., Greenman, W.B., and Lebo, G.R.: 1997, ‘A redefinition of Jupiter’s rotation period’, J. Geophys. Res. 102, 22,033–22,041.Google Scholar
  40. Hilgers, A.: 1992, ‘The auroral radiating plasma cavities’, Geophys. Res. Lett. 19, 237–240.Google Scholar
  41. Hospodarsky, G.B., Christopher, I.W., Menietti, J.D., Kurth, W.S., Gurnett, D.A., Averkamp, T.F., Groene, J.B., and Zarka, P.: 2001, ‘Control of Jovian radio emissions by the galilean moons as observed by Cassini and Galileo’, in H.O. Rucker, M.L. Kaiser, and Y. Leblanc (eds.), Planetary Radio Emissions V, Austrian Acad. Sci. Press, Vienna, pp. 155–164.Google Scholar
  42. Hospodarsky, G.B., Kurth, W.S., Cecconi, B., Gurnett, D.A., Kaiser, M.L., Desch, M.D., and Zarka, P.: 2004, ‘Simultaneous observations of jovian quasi-periodic radio emissions by the Galileo and Cassini spacecraft’, J. Geophys. Res., in press.Google Scholar
  43. Huff, R.L., Calvert, W., Craven, J.D., Frank, L.A., and Gurnett, D.A.: 1988, ‘Mapping of auroral kilometric radiation sources to the aurora’, J. Geophys. Res. 93, 11,445–11,454.Google Scholar
  44. Jones, D.: 1976, ‘Source of terrestrial non-thermal radiation’, Nature 260, 686.CrossRefGoogle Scholar
  45. Jones, D.: 1988, ‘Planetary radio emissions from low magnetic latitudes: Observations and theories’, in H.O. Rucker, S.J. Bauer, and B.M. Pedersen (eds.), Planetary Radio Emissions II, Verlag der Österreichischen Akademie der Wissenschaften, Wien, p. 255.Google Scholar
  46. Jones, D., Calvert, W., Gurnett, D.A., and Huff, R.L.: 1987, ‘Observed beaming of terrestrial myriametric radiation’, Nature 328, 391.CrossRefGoogle Scholar
  47. Kaiser, M.L., Connerney, J.E.P., and Desch, M.D.: 1983, ‘Atmospheric storm explanation of saturnian electrostatic discharges’, Nature 303, 50–53.CrossRefGoogle Scholar
  48. Kaiser, M.L., Desch, M.D., Kurth, W.S., Lecacheux, A., Genova, F., Pedersen, B.M., and Evans, D.R.: 1984, ‘Saturn as a radio source’, in T. Gehrels and M.S. Matthews (eds.), Saturn, Univ. of Ariz. Press, Tucson, pp. 378–415.Google Scholar
  49. Kaiser, M.L., Zarka, P., Desch, M.D., and Farrell, W.M.: ‘Restrictions on the characteristics of Neptunian lightning’, J. Geophys. Res. 96, 19,043–19,047.Google Scholar
  50. Kaiser, M.L., Desch, M.D., Farrell, W.M., MacDowall, R.J., Stone, R.G., Lecacheux, A., Pedersen, B.-M., and Zarka, P.: 1992, ‘Ulysses observations of escaping VLF emissions from Jupiter’, Geophys. Res. Lett. 19, 649–652.Google Scholar
  51. Kaiser, M.L., Zarka, P., Kurth, W.S., Hospodarsky, G.B., and Gurnett, D.A.: 2000, ‘Cassini andWind stereoscopic observations of jovian nonthermal radio emissions: Measurement of beam widths’, J. Geophys. Res. 105, 16,053–16,062.Google Scholar
  52. Kaiser, M.L., Farrell, W.M., Desch, M.D., Hospodarsky, G.B., Kurth, W.S., and Gurnett, D.A.: 2001, ‘Ulysses and Cassini at Jupiter: Comparison of the quasi-periodic radio bursts’, in H.O. Rucker, M.L. Kaiser, and Y. Leblanc (eds.), Planetary Radio Emissions V, Austrian Academy of Sciences press, Vienna, pp. 41-48.Google Scholar
  53. Kaiser, M.L., Farrell, W.M., Kurth, W.S., Hospodarsky, G.B., and Gurnett, D.A.: 2004a, ‘New observations from Cassini and Ulysses of Jovian VLF radio emissions’, J. Geophys. Res., in press.Google Scholar
  54. Kaiser, M.L., Farrell, W.M., Desch, M.D., Kurth, W.S., and Zarka, P.: 2004b, ‘Saturn’s electrostatic discharges:Where are they?’, COSPAR, session B0.5/D3.7/C3.4 ‘Saturn: Cassini/Huygens arrival and system science,’ Paris.Google Scholar
  55. Kurth, W.S.: 1982, ‘Detailed observations of the source of terrestrial narrowband electromagnetic radiation’, Geophys. Res. Lett. 9, 1341–1344.Google Scholar
  56. Kurth, W.S.: 1992, ‘Continuum radiation in planetary magnetospheres’, in H.O. Rucker, S.J. Bauer, and M.L. Kaiser (eds.), Planetary Radio Emissions III, Verlag der Österreichischen Akademie der Wissenschaften, Wien, p. 329.Google Scholar
  57. Kurth, W.S. and Zarka, P.: 2001, ‘Saturn radio waves’, in H.O. Rucker, M.L. Kaiser, and Y. Leblanc (eds.), Planetary Radio Emissions V, Austrian Academy of Sciences Press, Vienna, pp. 247–259.Google Scholar
  58. Kurth, W.S., Craven, J.D., Frank, L.A., and Gurnett, D.A.: 1979, ‘Intense electrostatic waves near the upper hybrid resonance frequency’, J. Geophys. Res. 84, 4,145–4,164.Google Scholar
  59. Kurth, W.S., Gurnett, D.A., and Scarf, F.L.: 1981, ‘Control of Saturn’s kilometric radiation by Dione’, Nature 292, 742–745.CrossRefGoogle Scholar
  60. Kurth, W.S., Gurnett, D.A., and Scarf, F.L.: 1989, ‘Jovian type III radio bursts’, J. Geophys. Res. 94, 6,917–6,924.Google Scholar
  61. Kurth, W.S., Hospodarsky, G.B., Gurnett, D.A., Lecacheux, A., Zarka, P., Desch, M.D., Kaiser, M.L., and Farrell, W.M.: 2001, ‘High-resolution observations of low-frequency jovian radio emissions by Cassini’, in H.O. Rucker, M.L. Kaiser, and Y. Leblanc (eds.), Planetary Radio Emissions V, Austrian Academy of Sciences Press, Vienna, pp. 15–28.Google Scholar
  62. Ladreiter, H.P., Zarka, P., and Lecacheux, A.: 1994a, ‘Direction-finding study of Jovian Hectometric and broadband kilometric radio emissions: Evidence for their auroral origin’, Planet. Space Sci. 42, 919–931.CrossRefGoogle Scholar
  63. Ladreiter, H.P., Galopeau, P., and Zarka, P.: 1994b, ‘The magnetic field anomaly of Saturn’, International Symposium on Magnetospheres of Outer Planets, Graz, Austria (abstract).Google Scholar
  64. Lecacheux, A.: 1988, ‘Polarization aspects from planetary radio emissions’, in H.O. Rucker et al. (eds.), Planetary Radio Emissions II, Austrian Acad. Sci. Press, Vienna, pp. 311–326.Google Scholar
  65. Lecacheux, A., Kurth, W.S., and Manning, R.: 2001, ‘Sub-second time scales in jovian radio emissions as measured by Cassini/RPWS: Comparison with ground-based observations’, in H.O. Rucker, M.L. Kaiser, and Y. Leblanc (eds.), Planetary Radio Emissions V, Austrian Academy of Sciences Press, Vienna, pp. 29–39.Google Scholar
  66. Louarn, P.: 1992, ‘Auroral planetary radio emissions: Theoretical aspects’, Adv. Space Res. 12, (8)121–(8)134.Google Scholar
  67. Louarn, P., Roux, A., De Féraudy, H., Le Quéau, D., André, M., and Matson, L.: 1990, ‘Trapped electrons as free energy source for the auroral kilometric radiation’, J. Geophys. Res. 95, 5,983–5,995.Google Scholar
  68. MacDowall, R.J., Kaiser, M.L., Desch, M.D., Farrell, W.M., Hess, R.A., and Stone, R.G.: 1993, ‘Quasiperiodic jovian radio bursts: observations from the Ulysses radio and plasma wave experiment’, Planet. Space Sci. 41, 1059–1072.CrossRefGoogle Scholar
  69. Manning, R. and Dulk, G.A.: 2001, ‘The Galactic background radiation from 0.2 to 13.8 MHz’, Astron. Astrophys. 372, 663–666.CrossRefGoogle Scholar
  70. Melrose, D.B.: 1981, ‘A theory for the nonthermal radio continua in the terrestrial and Jovian magnetospheres’, J. Geophys. Res. 86, 30–36.Google Scholar
  71. Mizera, P.F. and Fennel, J.F.: 1977, ‘Signature of electric fields from high and low altitude particle distribution’, Geophys. Res. Lett. 4, 311–314.Google Scholar
  72. Morgan, D.D. and Gurnett, D.A.: 1991, ‘The source location and beaming of terrestrial continuum radiation’, J. Geophys. Res. 96, 9,595–9,613.Google Scholar
  73. Neubauer, F.M., Gurnett, D.A., Scudder, J.D., and Hartle, R.E.: 1984, ‘Titan’s magnetospheric interaction’, in T. Gehrels and M.S. Matthews (eds.), Saturn, pp. 760-787, Univ. of Ariz. Press, Tucson, pp. 760–787.Google Scholar
  74. Oya, H.: 1971, ‘Conversion of electrostatic plasma waves into electromagnetic waves: Numerical calculation of the dispersion relation for all wavelengths’, Radio Sci. 6, 1131.Google Scholar
  75. Pallier, L. and Prangé, R.: 2001, More about the structure of the high latitude Jovian aurorae, Planet. Space Sci. 49, 1159–1173.CrossRefGoogle Scholar
  76. Prangé, R., Zarka, P., Ballester, G.E., Livengood, T.A., Denis, L., Carr, T.D., Reyes, F., Bame, S.J., and Moos, H.W.: 1993, ‘Correlated variations of UV and Radio emissions during an outstanding jovian auroral event’, J. Geophys. Res. 98, 18,779–18,791.Google Scholar
  77. Prangé, R., et al., submitted to Nature.Google Scholar
  78. Pritchett, P.L.: 1986, ‘Electron-cyclotron Maser instability in relativistic plasmas’, Phys. Fluids 29, 2,919–2,930.Google Scholar
  79. Rönnmark, K.: 1983, ‘Emission of myriametric radiation by coalescence of upper hybrid waves with low frequency waves’, Ann. Geophys. 1, 187.Google Scholar
  80. Santos-Costa, D., and Bourdarie, S.: 2001, ‘Modeling the inner Jovian electron radiation belt including non-equatorial particles’, Planet. Space Sci. 49, 303–312.CrossRefGoogle Scholar
  81. Santos-Costa, D., Blanc, M., Maurice, S., and Bolton, S.J.: 2003, ‘Modeling the electron and proton radiation belts of Saturn’, Geophys. Res. Lett. 30, SSC 6-1, CiteID 2059, DOI 10.1029/2003GL017972.Google Scholar
  82. Sicard, A., Bourdarie, S., Krupp, N., Lagg, A., Boscher, D., Santos-Costa, D., Gerard, E., Galopeau, P., Bolton, S.J., Sault, R.J., and Williams, D.J.: 2004, ‘Long-term dynamics of the inner Jovian electron radiation belts’, Adv. Space Res. 33, (11)2039–(11)2044.Google Scholar
  83. Steinberg, J.-L., Lacombe, C., Zarka, P., Hoang, S., and Perche, C.: 2004, ‘Terrestrial low-frequency bursts: escape paths of radio waves through the bow shock’, Planet. Space Sci. 52, 643–660.CrossRefGoogle Scholar
  84. Thorne, R.M.: 2002, ‘Why does the Earth not have a significant synchrotron electron belt compared to Jupiter?’, 11th International Congress on Plasma Physics, Sydney, Australia, 2002.Google Scholar
  85. Trauger, J.T., et al.: 1998, ‘Saturn’s hydrogen aurora: Wide-field planetary camera 2 imaging from the Hubble Space Telescope’, J. Geophys. Res. 103, 20,237–20,244.Google Scholar
  86. Van Allen, J.A. and Grosskreutz, C.L.: 1989, ‘Relativistic electrons in Saturn’s inner magnetosphere and an estimate of their synchrotron emission’, J. Geophys. Res. 94, 8,731–8,738.Google Scholar
  87. Vogl, D.F., et al.: 2004, ‘In-flight calibration of the Cassini-RPWS antenna system for direction- finding and polarization measurements’, J. Geophys. Res., in press.Google Scholar
  88. Warwick, J.W., et al.: 1981, ‘Planetary radio astronomy observations from Voyager 1 near Saturn’, Science 212, 239–243.Google Scholar
  89. Wu, C.S. and Lee, L.C.: 1979, ‘A theory of terrestrial kilometric radiation’, Astrophys. J. 230, 621–626.CrossRefGoogle Scholar
  90. Zarka, P.: 1985a, ‘Directivity of Saturn electrostatic discharges and ionospheric implications’, Icarus 61, 508–520.CrossRefGoogle Scholar
  91. Zarka, P.: 1985b, ‘On detection of radio bursts associated with jovian and saturnian lightning’, Astron. Astrophys. 146, L15–L18.Google Scholar
  92. Zarka, P.: 1998, ‘Auroral radio emissions at the outer planets: observations and theories’, J. Geophys. Res. 103, 20,159–20,194.Google Scholar
  93. Zarka, P.: 2000, ‘Radio emissions from the planets and their moons’, in R.G. Stone, K.W. Weiler, M.L. Goldstein, and J.-L. Bougeret (eds.), Radio Astronomy at Long Wavelength, Geophysical Monograph 119, American Geophysical Union, 167–178.Google Scholar
  94. Zarka, P.: 2004a, ‘Radio and plasma waves at the outer planets’, Adv. Space Res., in press.Google Scholar
  95. Zarka, P.: 2004b, ‘Fast radio imaging of Jupiter’s magnetosphere at low frequencies with LOFAR’, Planet. Space Sci., in press.Google Scholar
  96. Zarka, P., and Pedersen, B.M.: 1983, ‘Statistical study of Saturn electrostatic discharges’, J. Geophys. Res. 88, 9,007–9,018.Google Scholar
  97. Zarka, P. and Pedersen, B.M.: 1986, ‘Radio detection of Uranian lightning by Voyager 2’, Nature 323, 605–608.CrossRefGoogle Scholar
  98. Zarka, P., Pedersen, B.M., Lecacheux, A., Kaiser, M.L., Desch, M.D., Farrell, W.M., and Kurth, W.S.: 1995, ‘Radio emissions from Neptune, in D. Cruikshank and M.S. Matthews (eds.), Neptune and Triton, Univ. Arizona Press, 341–387.Google Scholar
  99. Zarka, P., Treumann, R.A., Ryabov, B.P., and Ryabov, V.B.: 2001, ‘Magnetically-driven planetary radio emissions and applications to extrasolar planets’, Astrophys. Space Sci. 277, 293–300.CrossRefGoogle Scholar
  100. Zarka, P., Cecconi, B., Kurth, W.S.: 2004a, ‘Jupiter’s low frequency radio spectrum from Cassini/RPWS absolute flux density measurements’, J. Geophys. Res., in press.Google Scholar
  101. Zarka, P., Farrell, W.M., Kaiser, M.L., Blanc, E., and Kurth, W.S.: 2004b, ‘Study of solar system planetary lightning with LOFAR’, Planet. Space Sci., in press.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.LESIA, Observatoire de ParisMeudonFrance
  2. 2.Dept. of Physics and AstronomyThe University of IowaIowa CityUSA
  3. 3.Département de Recherche SpatialeObservatoire de ParisMeudon CedexFrance

Personalised recommendations