Space Science Reviews

, Volume 116, Issue 1–2, pp 319–343 | Cite as

Giant Planet Ionospheres and Thermospheres: The Importance of Ion-Neutral Coupling

Article

Abstract

Planetary upper atmospheres-coexisting thermospheres and ionospheres-form an important boundary between the planet itself and interplanetary space. The solar wind and radiation from the Sun may react with the upper atmosphere directly, as in the case of Venus. If the planet has a magnetic field, however, such interactions are mediated by the magnetosphere, as in the case of the Earth. All of the Solar System’s giant planets have magnetic fields of various strengths, and interactions with their space environments are thus mediated by their respective magnetospheres. This article concentrates on the consequences of magnetosphere-atmosphere interactions for the physical conditions of the thermosphere and ionosphere. In particular, we wish to highlight important new considerations concerning the energy balance in the upper atmosphere of Jupiter and Saturn, and the role that coupling between the ionosphere and thermosphere may play in establishing and regulating energy flows and temperatures there. This article also compares the auroral activity of Earth, Jupiter, Saturn and Uranus. The Earth’s behaviour is controlled, externally, by the solar wind. But Jupiter’s is determined by the co-rotation or otherwise of the equatorial plasmasheet, which is internal to the planet’s magnetosphere. Despite being rapid rotators, like Jupiter, Saturn and Uranus appear to have auroral emissions that are mainly under solar (wind) control. For Jupiter and Saturn, it is shown that Joule heating and “frictional” effects, due to ion-neutral coupling can produce large amounts of energy that may account for their high exospheric temperatures.

Keywords

giant planets ionosphere thermosphere ion-neutral coupling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abel, B. and Thorne, R.M.: 2003, ‘Relativistic charged particle precipitation into Jupiter’s subauroral atmosphere’, Icarus 166, 311–319.CrossRefGoogle Scholar
  2. Achilleos, N., Miller, S., Tennyson, J., Aylward, A.D., Mueller-Wodarg, I., and Rees, D.: 1998, ‘JIM: a time-dependent, three-dimensional model of Jupiter’s thermosphere and ioniosphere’, J. Geophys. Res. 103, 20089–20112.CrossRefGoogle Scholar
  3. Atreya, S.K.: 1986, The Atmosphere and Ionospheres of the Outer Planets and Their Satellites, Springer Verlag, New York.Google Scholar
  4. Ballester, G.E., and 21 other colleagues: 1998, ‘Time-resolved observations of Jupiter’s far ultraviolet auroras’, Science 274, 409–413.CrossRefGoogle Scholar
  5. Baron, R., Joseph, R.D., Owen, T., Tennyson, J., Miller, S., and Ballester, G.E.: 1991, ‘Imaging Jupiter’s aurorae from H+ 3emissions in the 3–4mm band’, Nature 353, 539–542.CrossRefPubMedGoogle Scholar
  6. Bhardwaj, A. and Gladstone, G.R.: 2000, ‘Auroral emissions of the giant planets’, Rev. Geophys. 38, 295–353.CrossRefGoogle Scholar
  7. Broadfoot, A.L., and 18 others: 1986, ‘Ultraviolet spectrometer observations of Uranus’, Science 233, 74–79.Google Scholar
  8. Clarke, J.T., Caldwell, J., Skinner, T., and Yelle, R.: 1987, ‘The aurora and airglow of Jupiter’, in M.J.S. Belton, R.A. West, and J. Rahe (eds.), Time Variable Phenomena in the Jovian System NASA, Washington, pp. 211–228.Google Scholar
  9. Clarke, J.T., and 10 co-workers: 1998, ‘Hubble Space Telescope imaging of Jupiter’s UV aurora during the Galileo orbiter mission’, J. Geophys. Res. 103, 20217–20236.CrossRefGoogle Scholar
  10. Clarke, J.T., and 11 co-workers: 2002, ‘Ultraviolet emissions from the magnetic footprints of Io, Ganymede and Europa on Jupiter’, Nature 415, 997–1000.CrossRefPubMedGoogle Scholar
  11. Connerney, J.E.P., Baron, R., Satoh, T., and Owen, T.: 1993, ‘Images of excited H+ 3at the foot of the Io flux tube in Jupiter’s atmosphere’, Science 262, 1035–1038.Google Scholar
  12. Cowley, S.W.H. and Bunce, E.J.: 2001, ‘Origin of the main auroral oval in Jupiter’s coupled magnetosphere-ionosphere system’, Planet. Space Sci. 49, 1067–1088.Google Scholar
  13. Cowley, S.W.H., Bunce, E.J., Stallard, T.S., and Miller, S.: 2003, ‘Jupiter’s polar ionospheric flows: theoretical interpretation’, Geophys. Res. Lett. 30, 1220.CrossRefGoogle Scholar
  14. Cowley, S.W.H., Bunce, E.J., and Prangé, R.: 2004, ‘Saturn’s polar ionospheric flows and their relation to the main auroral oval’, Ann. Geophysicae 22, 1379.Google Scholar
  15. Drossart, P., Bézard, B., Atreya, S.K., Bishop, J., and Waite, J.H., Jr., and Boice, D.: 1993, ‘Thermal profiles in the auroral regions of Jupiter’, J. Geophys. Res. 98, 18803–18810.Google Scholar
  16. Dungey, J.W.: 1961, ‘The interplanetary magnetic field and auroral zones’, Phys. Rev. Lett. 6, 47.CrossRefGoogle Scholar
  17. Feldman, P.D., McGrath, M.A., Moos, H.W., Durrance, S.T., Strobel, D.F., and Davidson, A.F.: 1993, ‘The spectrum of the jovian dayglow observed at a 3A resolution with the Hopkins Ultraviolet Telescope’, Astrophys. J. 406, 279–284.CrossRefGoogle Scholar
  18. Gérard, J.-C., Dols, V., Grodent, D., Waite, J.H., Jr., and Prangé, R.: 1995, ‘Simultaneous observations of the saturnian aurora and polar haze with the HST/FOC’, Geophys. Res. Lett. 22, 2685–2688.CrossRefGoogle Scholar
  19. Grodent, D., Waite, J.H., Jr., and Gérard, J.-C.: 2001, ‘A self-consistent model of the jovian auroral thermal structure’, J. Geophys. Res. 106, 12933–12952.CrossRefGoogle Scholar
  20. Grodent, D., Clarke, J.T., Kim, J., Waite, J.H., Jr., and Cowley, S.W.H.: 2003, ‘Jupiter’s main auroral oval observed with HST-STIS’, J. Geophys. Res. 108, 9921–9937.Google Scholar
  21. Gurnett, D.A., and 16 co-workers: 2002, ‘Control of Jupiter’s radio emission and aurorae by the solar wind’, Nature 415, 985–987.CrossRefPubMedGoogle Scholar
  22. Heaps, M.G.: 1975, ‘The roles of particle precipitation and Joule heating in the energy balance of the jovian thermosphere’, Icarus 29, 273–281.CrossRefGoogle Scholar
  23. Herbert, F. and Sandel, B.R.: 1994, ‘The uranian aurora and its relationship to the magnetosphere’, J. Geophys. Res. 99, 4143–4160.CrossRefGoogle Scholar
  24. Hickey, M.P., Walterscheid, R.L., and Schubert, G.: 2000, ‘Gravity wave heating and cooling in Jupiter’s thermosphere’, Icarus 148, 266–281.CrossRefGoogle Scholar
  25. Hill, T.W.: 1979, ‘Inertial limit on corotation’, J. Geophys. Res. 84, 6554–6558.Google Scholar
  26. Hill, T.W.: 2001, ‘The jovian auroral oval’, J. Geophys. Res. 106, 8101–8107.CrossRefGoogle Scholar
  27. Hill, T.W. and Dessler, A.J.: 1991, ‘Plasma motions in planetary magnetospheres’, Science 252, 410–415.Google Scholar
  28. Huang, T.S. and Hill, T.W.: 1989, ‘Corotation lag of the jovian atmosphere, ionosphere and magnetosphere’, J. Geophys. Res. 94, 3761–3765.Google Scholar
  29. Isbell, J., Dessler, A.J., and Waite, J.H., Jr.: 1984, ‘Magnetospheric energization by interaction between planetary spin and solar wind’, J. Geophys. Res. 89, 10716–10722.Google Scholar
  30. Kim, Y.H., Fox, J.L., and Porter, H.S.: 1992, ‘Densities and vibrational distribution of H+ 3in the jovian auroral ionosphere’, J. Geophys. Res. 97, 6093–6101.Google Scholar
  31. Kivelson, M.G., and 13 colleagues: 1997, ‘Galileo at Jupiter: changing states of the magnetosphere and first look at Io and Ganymede’, Adv. Space Res. 20, 129.CrossRefGoogle Scholar
  32. Kivelson, M.G.: 2005, ‘The current systems of the jovian magnetosphere and ionosphere and predictions for Saturn’, this volume.Google Scholar
  33. Lam, H.A., Miller, S., Joseph, R.D., Geballe, T.R., Trafton, L.M., Tennyson, J., and Ballester, G.E.: 1997a, ‘Variation in the H+ 3emission of Uranus’, Astrophys. J. 474, L73–L76.CrossRefGoogle Scholar
  34. Lam, H.A., Achilleos, N., Miller, S., Tennyson, J., Trafton, L.M., Geballe, T.R., and Ballester, G.E.: 1997b, ‘A baseline spectroscopic study of the infrared auroras of Jupiter’, Icarus 127, 379–393.CrossRefGoogle Scholar
  35. Liu, W. and Dalgarno, A.: 1996, ‘The ultraviolet spectrum of the jovian dayglow’, Astrophys. J. 462, 502–518.CrossRefGoogle Scholar
  36. Majeed, T. and McConnell, J.C.: 1991, ‘The upper ionospheres of Jupiter and Saturn’, Planet. Space Sci. 39, 1715–1732.CrossRefGoogle Scholar
  37. Majeed, T., McConnell, J.C., and Yelle, R.V.: 1991, ‘Vibrationally excited H2 in the outer planets thermosphere: fluorescence in the Lyman and Werner bands’, Planet. Space Sci. 39, 1591–1605.CrossRefGoogle Scholar
  38. Majeed, T., Waite, J.H., Jr., Bougher, S.W., Yelle, R.V., Gladstone, G.R., McConnell, J.C., and Bhardwaj, A.: 2004a, ‘The ionospheres-thermospheres of the giant planets’, Adv. Space Res. 33, 197–211.CrossRefGoogle Scholar
  39. Majeed, T., Waite, J.H., Bougher, S.W., and Gladstone, G.R.: 2004b, ‘Jupiter thermosphere general circulation model I. Equatorial thermal structure’, J. Geophys. Res., submitted.Google Scholar
  40. Matcheva, K.I. and Strobel, D.F.: 1999, ‘Heating of Jupiter’s thermosphere by dissipation of gravity waves due to molecular viscosity and heat conduction’, Icarus 140, 328–340.CrossRefGoogle Scholar
  41. Melin, H., Stallard, T., and Miller, S.: 2004, ‘A new determination of Saturn’s upper atmospheric temperature in the auroral/polar region’, Astrophys. J. Lett., in preparation.Google Scholar
  42. Miller, S., Achilleos, N., Ballester, G.E., Lam, H.A., Tennyson, J., Geballe, T.R., and Trafton, L.M.: 1997, ‘Mid-to-low latitude H+ 3emission from Jupiter’, Icarus 130, 57–67.CrossRefGoogle Scholar
  43. Miller, S., and 10 other colleagues: 2000, ‘The role of H+ 3in planetary atmospheres’, Phil. Trans. Roy. Soc. 358, 2485–2502.CrossRefGoogle Scholar
  44. Millward, G., Miller, S., Stallard, T., Aylward, A.D., and Achilleos, N.: 2002, ‘On the dynamics of the jovian ionosphere and thermosphere III: the modelling of auroral conductivity’, Icarus 160, 95–107.CrossRefGoogle Scholar
  45. Millward, G., Miller, S., Stallard, T., Achilleos, N., and Aywlard, A.D.: 2004, ‘On the dynamics of the jovian ionosphere and thermosphere IV: ion-neutral coupling’, Icarus, in press.Google Scholar
  46. Moore, L., Mendillo, M., Mueller-Wodarg, I., and Murr, D.: 2004, ‘Photochemical modelling of global variations and ring shadowing in Saturn’s ionosphere’, Icarus, submitted.Google Scholar
  47. Moses, J.I. and Bass, S.F.: 2000, ‘The effects of external material on the chemistry and structure of Saturn’s ionosphere’, J. Geophys. Res. 105, 7013–7052.CrossRefGoogle Scholar
  48. Moses, J.I., Bézard, B., Lellouch, E., Gladstone, G.R., Feuchtgruber, H., and Allen, M.: 2000, ‘Photochemistry of Saturn’s atmosphere I. Hydrocarbon chemistry and comparisons with ISO observations’, Icarus 143, 244–298.CrossRefGoogle Scholar
  49. Mueller-Wodarg, I.C.F., Mendillo, M., Yelle, R.V., and Aylward, A.D.: 2004, ‘A global circulation model of Saturn’s thermosphere’, Icarus, in press.Google Scholar
  50. Pallier, L. and Prangé, R.: 2001, ‘More about the structure of the high latitude jovian aurorae’, Planet. Space Sci. 49, 1159–1173.CrossRefGoogle Scholar
  51. Prangé, R., Rego, D., Pallier, L., Connerney, J.E.P., Zarka, P., and Quenniec, J.: 1998, ‘Detailed study of FUV jovian auroral features with the post-COSTAR HST faint object camera’, J. Geophys. Res. 103, 20195–20215.CrossRefGoogle Scholar
  52. Pryor, W.R., Stewart, A.I.F., Simmons, K.E., Ajello, J.M., Tobiska, W.K., Clarke, J.T., and Gladstone, G.R.: 2001, ‘Detection of rapdily varying H2 emissions in Jupiter’s aurora from the Galileo orbiter’, Icarus 151, 314–317.CrossRefGoogle Scholar
  53. Rego, D., Achilleos, N., Stallard, T., Miller, S., Prangé, R., Dougherty, M., and Joseph, R.D.: 1999, ‘Supersonic winds in Jupiter’s aurorae’, Nature 399, 121–124.CrossRefGoogle Scholar
  54. Rego, D., Miller, S., Achilleos, N., Prangé, R., and Joseph, R.D.: 2000, ‘Latitudinal profiles of the jovian IR emission of H+ 3at 4 microns using the NASA Infrared Telescope Facility’, Icarus 147, 366–385.CrossRefGoogle Scholar
  55. Satoh, T., Connerney, J.E.P., and Baron, R.L.: 1996, ‘Emission source model of Jupiter’s H+ 3aurorae: a generalised inverse analysis of images’, Icarus 122, 1–23.CrossRefGoogle Scholar
  56. Satoh, T. and Connerney, J.E.P.: 1999, ‘Jupiter’s H+ 3emissions viewed in corrected jovimagnetic coordinates’, Icarus 141, 236–252.CrossRefGoogle Scholar
  57. Seiff, A., and 10 co-workers: 1998, ‘Thermal structure of Jupiter’s atmosphere near the edge of a 5-mm hot spot in the north equatorial belt’, J. Geophys. Res. 103, 22857–22890.CrossRefGoogle Scholar
  58. Smith, G.R., Shemansky, D.E., Holberg, J.B., Broadfoot, A.L., Sandel, B.R., and McConnell, J.C.: 1983, ‘Saturn’s upper atmosphere from the Voyager 2 EUV solar and stellar occultations’, J. Geophys. Res. 88, 8667–8678.Google Scholar
  59. Smith, C., Aylward, A., Miller, S., and Mueller-Wodarg, I.C.F.: 2004, ‘Polar heating in Saturn’s thermosphere’, Ann. Geophysicae, submitted.Google Scholar
  60. Southwood, D.J. and Kivelson, M.G.: 2001, ‘A new perspective on the influence of the solar wind on the jovian magnetosphere’, J. Geophys. Res. 106, 6123–6130.CrossRefGoogle Scholar
  61. Stallard, T., Miller, S., Millward, G., and Joseph, R.D.: 2001, ‘On the dynamics of the jovian ionosphere and thermosphere I: the measurement of ion winds’, Icarus 154, 475–491.CrossRefGoogle Scholar
  62. Stallard, T.S., Miller, S., Cowley, S.W.H., and Bunce, E.J.: 2003, ‘Jupiter’s polar ionospheric flows: measured intensity and velocity variations poleward of the main auroral oval’, Geophys. Res. Lett. 30, 1221.CrossRefGoogle Scholar
  63. Stallard, T.S., Miller, S., Trafton, L.M., Geballe, T.R., and Joseph, R.D.: 2004, ‘Ion winds in Saturn’s southern auroral/polar region’, Icarus 167, 204–211.CrossRefGoogle Scholar
  64. Strobel, D.F. and Smith, G.R.: 1973, ‘On the Temperature of the Jovian Thermosphere’, J. Atmos. Sci. 30, 718.CrossRefGoogle Scholar
  65. Strobel, D.F.: 2005, ‘Photochemistry in outer solar system atmospheres’, this volume.Google Scholar
  66. Trafton, L.M., Miller, S., Geballe, T.R., Tennyson, J., and Ballester, G.E.: 1999, ‘H2 quadrupole and H+ 3emission from Uranus: the uranian thermosphere, ionosphere and aurora’, Astrophys. J. 524, 1059–1083.CrossRefGoogle Scholar
  67. Trauger, J.T., and 16 co-workers: 1998, ‘Saturn’s hydrogen aurora: wide field planetary camera 2 imaging from Hubble Space Telescope’, J. Geophys. Res. 103, 20237–20244.CrossRefGoogle Scholar
  68. Vasavada, A.R., Bouchez, A.H., Ingersoll, A.P., Little, B., Anger, C.D., and the Galileo SSI Team: 1999, ‘Jupiter’s visible aurora and Io footprint’, J. Geophys. Res. 104, 27133–27142.CrossRefGoogle Scholar
  69. Vasyliunas, V.M.: 1983, ‘Plasma distribution and flow’, in A.J. Dessler (ed.), Physics of the jovian magnetosphere, Cambridge University Press, pp. 395–453.Google Scholar
  70. Vincent, M.B., and 18 co-workers: 2000, ‘Jupiter’s polar regions in the ultraviolet as imaged by HST/WIFPC2: auroral aligned features and zonal motions’, Icarus 143, 205–222.CrossRefGoogle Scholar
  71. Waite, J.H., Jr., Cravens, T.E., Kozyra, J.U., Nagy, A.F., Atreya, S.K., and Chen, R.H.: 1983, ‘Electron precipitation and related auronomy of the jovian thermosphere and ionosphere’, J. Geophys. Res. 88, 6143–6163.Google Scholar
  72. Waite, J.H., Jr., Gladstone, G.R., Lewis, W.S., Drossart, P., Cravens, T.E., Maurelis, A.N., Mauk, B.H., and Miller, S.: 1997, ‘Equatorial X-ray emissions: implications for Jupiter’s high exospheric temperatures’, Science 276, 104–108.CrossRefPubMedGoogle Scholar
  73. Waite, J.H., Jr., and 10 co-workers: 2001, ‘An auroral flare at Jupiter’, Nature 410, 787–789.CrossRefPubMedGoogle Scholar
  74. Waite, J.H., Jr. and Lummerzheim, D.: 2002, ‘Comparison of auroral processes: Earth and Jupiter, in M.Mendillo, A. Nagy, and J.H.Waite (eds.), Atmospheres in the Solar System, AGU Geophysical Monograph 130, 115–139.Google Scholar
  75. Yelle, R.V. and Miller, S.: 2004, ‘Jupiter’s thermosphere and ionosphere in F. Bagenal, T.E. Dowling, and W.B. McKinnon (eds.), Jupiter: The Planet, Satellites and Magnetosphere Cambridge University Press.Google Scholar
  76. Young, L.A., Yelle, R.V., Young, R.E., Seiff, A., and Kirk, D.B.: 1997, ‘Gravity waves in Jupiter’s thermosphere’, Science 276, 108–111.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Atmospheric Physics Laboratory, Department of Physics and AstronomyUniversity College LondonLondonU.K.

Personalised recommendations