Space Science Reviews

, Volume 116, Issue 1–2, pp 227–298 | Cite as

Solar System Magnetospheres

  • M. BlancEmail author
  • R. Kallenbach
  • N. V. Erkaev


This article proposes a short review of our present knowledge of solar system magnetospheres, with the purpose of placing the study of Saturn’s magnetosphere in the context of a comparative approach. We describe the diversity of solar system magnetospheres and the underlying causes of this diversity: nature and magnetization state of the planetary obstacle, presence or not of a dense atmosphere, rotation state of the planet, existence of a system of satellites, rings and neutral gas populations in orbit around the planet. We follow the “russian doll” hierarchy of solar system magnetospheres to briefly describe the different objects of this family: the heliosphere, which is the Sun’s magnetosphere; the “elementary” magnetospheres of the inner planets, Earth and Mercury; the “complex” magnetospheres of the giant planets, dominated by planetary rotation and the presence of interacting objects within their magnetospheric cavities, some of which, like Ganymede, Io or Titan, produce small intrinsic or induced magnetospheres inside the large one.We finally describe the main original features of Saturn’s magnetosphere as we see them after the Voyager fly-bys and before the arrival of Cassini at Saturn, and list some of the key questions which Cassini will have to address during its four-year orbital tour.


Atmosphere Mercury Titan Solar System Magnetization State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acuña, M.H., Neubauer, F.M., and Ness, N.F.: 1981, ‘Standing Alfvén wave current system at Io: Voyager 1 observations’, J. Geophys. Res. 86, 8513–8521.Google Scholar
  2. Altobelli, N., Kempf, S., Landgraf, M., Srama, R., Dikarev, V., Krüger, H., Moraga-Klostermeyer, G., and Grün, E.: 2004, ‘Cassini between Venus and Earth: Detection of interstellar dust’, J. Geophys. Res. 108, LIS 7-1, CiteID 8032.CrossRefGoogle Scholar
  3. Atreya, S., and Wong, A.-S.: 2005, ‘Coupled clouds and chemistry of the giant planets – a case for multiprobes’, this volume.Google Scholar
  4. Axford, W.I., and Hines, : 1960,Google Scholar
  5. Bagenal, F.: 1992, ‘Giant planet magnetospheres’, Annu. Rev. Earth Planet. Sci. 20, 289–320.CrossRefGoogle Scholar
  6. Bagenal, F., and Y. Leblanc: 1988, ‘Io’s Alfvén wave pattern and the Jovian decametric arcs’, Astron. Astrophys. 197, pp. 311–319.Google Scholar
  7. Bagenal, F., Dowling, T.E., and McKinnon, W.B. (eds.): 2004, Jupiter. The planet, satellites and magnetosphere, Cambridge University Press, Cambridge, UK.Google Scholar
  8. Baranov, V.B., Krasnobaev, K.V., and Kulikovksy, A.G.: 1971, ‘A model of the interaction of the solar wind with the interstellar medium’, Sov. Phys. Dokl. 15, 791–793.Google Scholar
  9. Bhardwaj, A. and Gladstone, G.R.: 2000, ‘Auroral emissions of the giant planets’, Rev. Geophys. 38, 295.CrossRefGoogle Scholar
  10. Bar-Nun, A.G., Herman, G., Rappaport, M.L., and Mekler, Y.: 1982, ‘Sputtering of water ice at 30–40K by 0.5–6.0 keV H+and Ne+ions’, Surface Sci. 150, 193–201.Google Scholar
  11. Beebe, R.: 2005, ‘Comparative study of the dynamics of the outer planets’, this volume.Google Scholar
  12. Belcher, J.W.: 1983, ‘The low-energy plasma in the Jovian magnetosphere’, in A.J. Dessler (ed.), Physics of the Jovian magnetosphere, Cambridge Univ. Press, New York, pp. 68–106.Google Scholar
  13. Belcher, J.W., McNutt, R.L., Jr., Richardson, J.D., Selesnick, R.S., Sittler, E.C., and Bagenal, F.: 1991, ‘The plasma environment of Uranus’, in J.T. Bergstralh, E.D. Miner, and M.S. Matthews (eds.), Univ. of Arizona Press, Tucson, pp. 780–830.Google Scholar
  14. Ben-Jaffel, L., Leers, V., and Sandel, B.: 1995, ‘Dark auroral oval on Saturn discovered in Hubble Space Telescope ultraviolet images’, Science 269, 951–953.Google Scholar
  15. Bennett, J.O.: 2004, The Cosmic Perspective: The Solar System, Addison Wesley.Google Scholar
  16. Bergstrahl, J.T., Miner, E.D., and M.S. Matthews (eds.): 1991, Uranus, Univ. Arizona Press, Tucson.Google Scholar
  17. Bhardwaj, A. and Gladstone, G.R.: 2000, ‘Auroras on Saturn, Uranus, and Neptune’, Adv. Space Res. 26, 1551–1558.CrossRefGoogle Scholar
  18. Bida, T.A., Killen, R.M., and Morgan, T.H.: 2000, ‘Discovery of calcium in Mercury’s atmosphere’, Nature 404, 159–161.CrossRefPubMedGoogle Scholar
  19. Bigg, E.K.: 1964, ‘Influence of the satellite Io on Jupiter’s decametric emission’, Nature 203, 1008.Google Scholar
  20. Bird, M.K., Dutta-Roy, R., Asmar, S.W., and Rebold, T.A.: 1997, ‘Possible detection of Titan’s ionosphere from Voyager 1 radio occultation observations’, Icarus 130, 426–436.CrossRefGoogle Scholar
  21. Birmingham, T.J., Northrop, T., and Fälthammar, C.-G.: 1967, ‘Charged particle diffusion by violation of the third adiabatic invariant’, Phys. Fluids 10, 2389–2398.CrossRefGoogle Scholar
  22. Blanc, M., et al.: 2002, ‘Magnetospheres and plasma science with Cassini-Huygens’, Space Sci. Rev. 104, 253–346.CrossRefGoogle Scholar
  23. Bolton, S.J., Thorne, R.M., Gurnett, D.A., Kurth, W.S., and Williams, D.J.: 1997, ‘Enhanced whistler-mode emissions: Signatures of interchange motion in the Io torus’, Geophys. Res. Lett. 24, 2123.CrossRefGoogle Scholar
  24. Bolton, S.J., Thorne, R.M., Bourdarie, S., Depater, I., and Mauk, B.: 2004, ‘Jupiter’s inner radiation belts’, in F. Bagenal, T.E. Dowling, and W.B. McKinnon (eds.), Jupiter. The planet, satellites and magnetosphere, Cambridge University Press, Cambridge, UK, pp. 671–688.Google Scholar
  25. Brackmann, R.T., and Fite, W.L.: 1961, J. Chem. Phys. 34, 1572.CrossRefGoogle Scholar
  26. Brice, N.M., and McDonough, T.R.: 1973, ‘Jupiter’s radiation belts’, Icarus 18, 206–219.CrossRefGoogle Scholar
  27. Bridge, H.S., et al.: 1981, ‘Plasma observations near Saturn – initial results from Voyager 1’, Science 212, 217–224.Google Scholar
  28. Bridge, H.S., et al.: 1982, ‘Plasma observations near Saturn – initial results from Voyager 2’, Science 215, 563–570.Google Scholar
  29. Broadfoot, A.L., Kumar, S., Belton, M.J.S., and McElroy, M.B.: 1974, ‘Mercury’s atmosphere from Mariner 10: Preliminary results’, Science 185, 166–169.Google Scholar
  30. Budzien, S.A., Festou, M.C., and Feldman, P.D.: 1994, ‘Solar flux variability and the lifetimes of cometary H2O and OH’, Icarus 107, 164–188.CrossRefGoogle Scholar
  31. Burke, B.F. and Franklin, K.L.: 1955, ‘Observations of a variable radio source associated with the planet Jupiter’, J. Geophys. Res. 60, 213.Google Scholar
  32. Cabane, M., and Chassefiére, E.: 1995, ‘Laboratory simulations of Titan’s atmosphere: organic gases and aerosols’, Planet. Space Sci. 43, 47–65.CrossRefPubMedGoogle Scholar
  33. Cahill, L.J. and Amazeen, P.G.: 1963, ‘The boundary of the geomagnetic field’, J. Geophys. Res. 68, 1835–1843.Google Scholar
  34. Carlson, R.W.: 1980, ‘Photo-sputtering of ice and hydrogen around Saturn’s rings’, Nature 283, 461.CrossRefGoogle Scholar
  35. Chassefiére, E., and Cabane, M.: 1995, ‘Two formation regions for Titan’s hazes: indirect clues and possible synthesis mechanisms’, Planet. Space Sci. 43, 91–103.CrossRefPubMedGoogle Scholar
  36. Cheng, A.F., Johnson, R.E., Krimigis, S.M., and Lanzerotti, L.J.: 1987, ‘Magnetosphere, exosphere and surface of Mercury’, Icarus 71, 430–440.CrossRefGoogle Scholar
  37. Cheng, A.F., Krimigis, S.M., and Lanzerotti, L.J.: 1991, ‘Energetic particles at Uranus’, in J.T. Bergstralh, E.D. Miner, and M.S. Matthews (eds.), Univ. Arizona Press, Tucson, pp. 831–893.Google Scholar
  38. Chiu, Y.T. and Schulz, M.: 1978, ‘Self-consistent particle and parallel electrostatic field distributions in the magnetospheric-ionospheric auroral region’, J. Geophys. Res. 83, 629–642.Google Scholar
  39. Christon, S.P.: 1989, ‘Plasma and energetic electron flux variations in the Mercury 1 C event –evidence for a magnetospheric boundary layer’, J. Geophys. Res. 94, 6481–6505.Google Scholar
  40. Clarke, J.T., Moos, H.W., Atreya, S.K., and Lane, A.L.: 1981, ‘IUE detection of bursts of H Ly-alpha emission from Saturn’, Nature 290, 226–227.CrossRefGoogle Scholar
  41. Clarke, J.T., Ajello, J., Ballester, G., Ben-Jaffel, L., Connerney, J., Gérard, J.-C., Gladstone, G.R., Pryor, W., Trauger, J., and Waite, J.H., Jr.: 2002, ‘Ultraviolet emissions from the magnetic footprints of Io, Ganymede, and Europa on Jupiter’, Nature 415, 997–1000.CrossRefPubMedGoogle Scholar
  42. Clarke, J.T., Grodent, D., Cowley, S.W.H., Bunce, E.J., Zarka, P., Connerney, J.E.P., and Satoh, T.: 2004, ‘Jupiter’s aurora’, in F. Bagenal, T.E. Dowling, and W.B. McKinnon (eds.), Jupiter. The planet, satellites and magnetosphere, Cambridge University Press, Cambridge, UK, pp. 639–670.Google Scholar
  43. Connerney, J.E.P., and Ness, N.F.: 1988, ‘Mercury’s magnetic field and interior’, in F. Vilas, C.R. Chapman, and M.S. Matthews (eds.), Mercury, Univ. Arizona Press, Tucson, pp. 494–513.Google Scholar
  44. Connerney, J.E.P., Davis, L., Jr., and Chenette, D.L.: 1984, ‘Magnetic field models’, in T. Gehrels and M.S. Matthews (eds.), Saturn, Univ. of Arizona Press, Tucson, pp. 354–377.Google Scholar
  45. Coroniti, F.V.: 1974, ‘Energetic electrons in Jupiter’s magnetosphere’, Astrophys. J. Suppl. Ser. 27, 261–281.CrossRefGoogle Scholar
  46. Coustenis, A.: 2005, ‘Formation and evolution of Titan’s atmosphere’, this volume.Google Scholar
  47. Cowley, S.W.H., Bunce, E.J., and Prangé, R.: 2004, ‘Saturn’s polar ionospheric flows and their relation to the main auroral oval’, Ann. Geophysicae 22, 1379.Google Scholar
  48. Crary, F.J. and Bagenal, F.: 1997, ‘Coupling the plasma interaction at Io to Jupiter’, Geophys. Res. Lett. 24, 2135–2138.CrossRefGoogle Scholar
  49. Cravens, T.E., Keller, C.N., and Gan, L.: 1992, ‘The ionosphere of Titan and its interaction with Saturnian magnetospheric electrons’, ESA SP-338, pp. 273–278.Google Scholar
  50. Decker, R.B. and Cheng, A.F.: 1994, ‘A model of Triton’s role in Neptune’s magnetosphere’, J. Geophys. Res. 99, 19027–19045.CrossRefGoogle Scholar
  51. Delamere, P.A., Bagenal, F., Ergun, R., and Su, Y.-J.: 2003, ‘Momentum transfer between the Io plasma wake and Jupiter’s ionosphere’, J. Geophys. Res. 108,SMP 11-1, CiteID 1241.Google Scholar
  52. Desch, M.D., and Kaiser, M.L.: 1981, ‘Saturn’s kilometric radiation – satellite modulation’, Nature 292, 739–741.CrossRefGoogle Scholar
  53. Dungey, : 1961, ‘Interplanetary magnetic field and auroral zones’, Phys. Rev. Lett. 6, 47.CrossRefGoogle Scholar
  54. Encrenaz, T.: 2005, ‘Neutral atmospheres of the giant planets: an overview of composition measurements’, this volume.Google Scholar
  55. Encrenaz, T., Bibring, J.-P., Blanc, M., Barucci, M.-A., Roques, F., and Zarka, P.: 2004, The Solar System, Springer.Google Scholar
  56. Erkaev, N.V., Shaidurov, V.A., Semenov, V.S., and Biernat, H.K.: 2002, ‘Effects of MHD slow shocks propagating along magnetic flux tubes in a dipole magnetic field’, Nonlinear Processes in Geophysics 9, 163.Google Scholar
  57. Erkaev, N.V., Shaidurov, V.A., Semenov, V.S., Langmayr, D., Biernat, H.K.: 2004, ‘Peculiarities of Alfvén wave propagation along a nonuniform magnetic flux tube’, Phys. Plasmas, in press.Google Scholar
  58. Espinosa, S.A., and Dougherty, M.K.: 2000, ‘Periodic perturbations in Saturn’s magnetic field’, Geophys. Res. Lett. 27, 2785–2788.CrossRefGoogle Scholar
  59. Eviatar, A., Siscoe, G.L., Scudder, J.D., Sittler, E.C., Jr., and Sullivan, J.D.: 1982, ‘The plumes of Titan’, J. Geophys. Res. 87, 8091–8103.Google Scholar
  60. Eviatar, A., Strobel, D.F., Wolven, B.C., Feldman, P.D., McGrath, M.A., and Williams, D.J.: 2001, ‘Excitation of the Ganymede ultraviolet aurora’, Astrophys. J. 555, 1013–1019.CrossRefGoogle Scholar
  61. Fälthammar, C.-G.: 1968, ‘Radial diffusion by violation of the third adiabatic invariant’, in B.M. McCormac (ed.), Earth’s Particles and Fields, Reinhold, New York, pp. 157–169.Google Scholar
  62. Feldman, P.D., McGrath, M.A., Strobel, D.F., Moos, H.W., Retherford, K.D., and Wolven, B.C.: 2000, ‘HST/STIS UV imaging of polar aurora on Ganymede’, Astrophys. J. 535, 1085–1090.CrossRefGoogle Scholar
  63. Ferriére, K.M. and André, N.: 2002, ‘A mixed magnetohydrodynamic-kinetic theory of lowfrequency waves and instabilities in homogeneous, gyrotropic plasmas’, J. Geophys. Res. 107, SMP 7-1, CiteID 1349.Google Scholar
  64. Ferriére, K.M., Zimmer, C., and Blanc, M.: 1999, ‘Magnetohydrodynamic waves and gravitational/ centrifugal instability in rotating systems’, J. Geophys. Res. 104, 17335–17356.CrossRefGoogle Scholar
  65. Ferriére, K.M., Zimmer, C., and Blanc, M.: 2001, ‘Quasi-interchange modes and interchange instability in rotating magnetospheres’, J. Geophys. Res. 106, 327–344.CrossRefGoogle Scholar
  66. Frank, L.A., Burek, B.G., and Ackerson, K.L.: 1980, ‘Plasmas in Saturn’s magnetosphere’, J. Geophys. Res. 85, 5695–5708.Google Scholar
  67. Frank, L.A., Paterson, W.R., Ackerson, K.L., Vasyliunas, V.M., Coroniti, F.V., and Bolton, S.J.: 1996, ‘Plasma observations at Io with the Galileo spacecraft’, Science 274, 394–395.CrossRefPubMedGoogle Scholar
  68. Galand, M. and Chakrabarti, S.: 2002, ‘Auroral processes in the solar system’, in Atmospheres in the Solar System: comparative aeronomy, Geophys. Monograph 130, AGU.Google Scholar
  69. Galand, M., Lilensten, J., Toublanc, D., and Maurice, S.: 1999, ‘The ionosphere of Titan: Ideal diurnal and nocturnal cases’, Icarus 140, 92–105.CrossRefGoogle Scholar
  70. Gan, L., Keller, C. N. and Cravens, T.E.: 1992, ‘Electrons in the ionosphere of Titan’, J. Geophys. Res. 97, 12137–12151.Google Scholar
  71. Geiss, J., et al.: 1992, ‘Plasma composition in Jupiter’s magnetosphere – initial results from the Solar Wind Ion Composition Spectrometer’, Science 257, 1535–1539.Google Scholar
  72. Glassmeier, K.-H.: 1997, ‘The Hermean magnetosphere and its ionosphere-magnetosphere coupling’, Planet. Space Sci. 45, 119–125.CrossRefGoogle Scholar
  73. Gloeckler, G., Geiss, J., Balsiger, H., Fisk, L.A., Galvin, A.B., Ipavich, F.M., Ogilvie, K.W., von Steiger, R., and Wilken, B.: 1993, ‘Detection of interstellar pick-up hydrogen in the solar system’, Science 261, 70–73.Google Scholar
  74. Gloeckler, G., et al.: 2004, ‘Observations of the helium focusing cone with pickup ions’, Astron. Astrophys. 426 845–854.CrossRefGoogle Scholar
  75. Gold, T.: 1959, ‘Plasma and magnetic fields in the solar system’, J. Geophys. Res. 64, 1665.Google Scholar
  76. Gurnett, D.A. and Goertz, C.K.: 1981, ‘Multiple Alfvén wave reflections excited by Io: Origin of the Jovian decametric arcs’, J. Geophys. Res. 86, 717–722.Google Scholar
  77. Gurnett, D.A., Kurth, W.S., and Scarf, F.L.: 1981, ‘Plasma waves near Saturn – Initial results from Voyager 1’, Science 212, 235–239.Google Scholar
  78. Gurnett, D.A., Kurth, W.S., Roux, A., Bolton, S.J., and Kennel, C.F.: 1996, ‘Galileo plasma wave observations in the Io plasma torus and near Io’, Science 274, 391–392.CrossRefGoogle Scholar
  79. Gurnett, D.A., et al.: 2002, ‘Control of Jupiter’s radio emission and aurorae by the solar wind’, Nature 415, 985–987.CrossRefPubMedGoogle Scholar
  80. Hall, D.T., Feldman, P.D., Holberg, J.B., and McGrath, M.A.: 1996, ‘Fluorescent hydroxyl emissions from Saturn’s ring atmosphere’, Science 272, 516–518.PubMedGoogle Scholar
  81. Harb, T., Kedzierski, W., and McConkey, J.W.: 2001, ‘Production of ground state OH following electron impact on H2O’, J. Chem. Phys. 115, 5507–5512.CrossRefGoogle Scholar
  82. Harrison, H., and Schoen, R.I.: 1967, ‘Evaporation of ice in space: Saturn’s rings’, Science 157, 1157–1176.Google Scholar
  83. Hartle, R.E., Sittler, E.C., Jr., Ogilvie, K.W., Scudder, J.D., Lazarus, A.J., and Atreya, S.K.: 1982, ‘Titan’s ion exosphere observed from Voyager 1’, J. Geophys. Res. 87, 1383–1394.Google Scholar
  84. Haynes, P.L., Balogh, A., Dougherty, M.K., Southwood, D.J., and Fazakerley, A.: 1994, ‘Null fields in the outer Jovian magnetosphere: Ulysses observations’, Geophys. Res. Lett. 21, 405–408.CrossRefGoogle Scholar
  85. Hess, W.N.: 1968, The Radiation Belt and Magnetosphere, Blaisdell Publishing Company.Google Scholar
  86. Hill, T.W.: 1979, ‘Inertial limit on co-rotation’, J. Geophys. Res. 84, 6554–6558.Google Scholar
  87. Hill, T.W. and Vasyliunas, V.M.: 2002, ‘Jovian auroral signature of Io’s corotational wake’, J. Geophys. Res. 107, SMP 27-1.Google Scholar
  88. Hill, T.W., Dessler, A.J., and Goertz, C.K.: 1983, ‘Magnetospheric models’, in A.J. Dessler (ed.), Physics of the Jovian magnetosphere, Cambridge Univ. Press, New York, pp. 353–394.Google Scholar
  89. Hinson, D.P., Kliore, A.J., Flasar, F.M., Twicken, J.D., Schinder, P.J., and Herrera, R.G.: 1998, ‘Galileo radio occultation measurements of Io’s ionosphere and plasma wake’, J. Geophys. Res. 103, 29343–29358.CrossRefGoogle Scholar
  90. Hinteregger, H.E., Fukui, K., and Gilson, B.R.: 1981, ‘Observational, reference and model data on solar EUV, from measurements on AE-E’, Geophys. Res. Lett. 8, 1147–1150.Google Scholar
  91. Hood, L.L.: 1983, ‘Radial diffusion in Saturn’s radiation belts – a modeling analysis assuming satellite and ring E’, J. Geophys. Res. 88, 808–818.Google Scholar
  92. Hood, L.L.: 1985, ‘Radial diffusion of low-energy ions in Saturn’s radiation belts – a combined analysis of phase space density and satellite microsignature data’, J. Geophys. Res. 90, 6295–6303.Google Scholar
  93. Hood, L.L.: 1989, ‘Radial diffusion and losses of energetic protons in the 5 to 12 R Sregion of Saturn’s magnetosphere’, J. Geophys. Res. 94, 8721–8730.Google Scholar
  94. Huddleston, D.E., Strangeway, R.J., Blanco-Cano, X., Russell, C.T., Kivelson, M.G., and Khurana, K.K.: 1999, ‘Mirror-mode structures at the Galileo-Io flyby: Instability criterion and dispersion analysis’, J. Geophys. Res. 104, 17479–17490.CrossRefGoogle Scholar
  95. Hultqvist, B., Oieroset, M., Paschmann, G., and Treumann, R. (eds.): 1999, Magnetospheric Plasma Sources and Losses, Space Sci. Ser. ISSI 6, Springer, 496 pp; reprinted from Space Sci. Rev. 88.Google Scholar
  96. Hunten, D.M., Tomasko, M.G., Flasar, F.M., Samuelson, R.E., Strobel, D.F., and Stevenson, D.J.: 1984, ‘Titan’, in T. Gehrels and M.S. Matthews (eds.), Saturn, Univ. Arizona Press, Tucson, pp. 671–759.Google Scholar
  97. Ip, W.-H.: 1987, ‘Mercury’s magnetospheric irradiation effect on the surface’, Geophys. Res. Lett. 14, 1191–1194; ‘Dynamics of electrons and heavy ions in Mercury’s magnetosphere’, Icarus 71, 441–447.Google Scholar
  98. Johnson, R.E., Pospieszalska, M.K., Sittler, E.C., Cheng, A.F., Lanzerotti, L.J., and Sieveka, E.M.: 1989, ‘The neutral cloud and heavy inner torus at Saturn’, Icarus 77, 311–329.CrossRefGoogle Scholar
  99. Judge, D.L., Wu, F.-M., and Carlson, R.W.: 1980, ‘Ultraviolet photometer observations of the Saturnian system’, Science 207, 431–434.Google Scholar
  100. Jurac, S. and Richardson, J.D.: 2004, ‘A self-consistent model of plasma and neutrals at Saturn: Neutral cloud morphology’, J. Geophys. Res., in press.Google Scholar
  101. Jurac, S., Johnson, R.E., Richardson, J.D., and Paranicas, C.: 2001, ‘Satellite sputtering in Saturn’s magnetosphere’, Planet. Space Sci. 49, 319–326.CrossRefGoogle Scholar
  102. Jurac, S., McGrath, M.A., Johnson, R.E., Richardson, J.D., Vasyliunas, V.M., and Eviatar, A.: 2002, ‘Saturn: Search for a missing water source’, Geophys. Res. Lett. 29, 25-1, CiteID 2172.Google Scholar
  103. Kaiser, M.L., Desch, M.D., Kurth, W.S., Lecacheux, A., Genova, F., Pedersen, B.M., and Evans, D.R.: 1984, ‘Saturn as a radio source’, in T. Gehrels and M.S. Matthews (eds.), Saturn, Univ. Arizona Press, Tucson.Google Scholar
  104. Kallenbach, R., Geiss, J., Gloeckler, G., and von Steiger, R.: 2000, ‘Pick-up ion measurements in the heliosphere – a review’, Astrophys. Space Sci. 274, 97–114.CrossRefGoogle Scholar
  105. Kallenbach, R., Hilchenbach, M., Chalov, S.V., and Bamert, K.: 2004, ‘On the origin of energetic neutral atoms detected by the SOHO/CELIAS/HSTOF sensor’, in V. Florinsky, N.V. Pogorelov, and G.P. Zank (eds.), Physics of the Outer Heliosphere, AIP Conf. Proc. 719, pp. 229–236.Google Scholar
  106. Kaiser, M.L., Desch, M.D., Warwick, J.W., and Pearce, J.B.: 1980, ‘Voyager detection of nonthermal radio emission from Saturn’, Science 209, 1238–1240.Google Scholar
  107. Khurana, K.K., Kivelson, M.G., and Russell, C.R.: 1997, ‘Interaction of Io with its torus: Does Io have an internal magnetic field?’ Geophys. Res. Lett. 24, 2391–2394.CrossRefGoogle Scholar
  108. Khurana, K.K., Kivelson, M.G., Vasyliunas, V., Krupp, N., Woch, J., Lagg, A., Mauk, B.H., and Kurth, W.S.: 2004, ‘The configuration of Jupiter’s magnetosphere’, in F. Bagenal, T.E. Dowling, and W.B. McKinnon (eds.), Jupiter. The planet, satellites and magnetosphere, Cambridge University Press, Cambridge, UK, pp. 593–616.Google Scholar
  109. Killen, R.M., Potter, A.E., Reiff, P., Sarantos, M., Jackson, B.V., Hick, P., and Giles, B.: 2001, ‘Evidence for space weather at Mercury’, J. Geophys. Res. 106, 20509–20526.CrossRefGoogle Scholar
  110. Kim, Y.-K., Hwang, W., Weinberger, N.M., Ali, M.A., and Rudd, M.E.: 1997, ‘Electron-impact ionization cross sections of atmospheric molecules’, J. Chem. Phys. 106, 1026–1033.CrossRefGoogle Scholar
  111. Kivelson, M.G.: 2005, ‘The current systems of the Jovian magnetosphere and ionosphere and predictions for Saturn’, this volume.Google Scholar
  112. Kivelson, M. and Bagenal, F.: 1999, ‘Planetary magnetospheres’, in Encyclopedia of the Solar System, Academic Press, p. 477.Google Scholar
  113. Kivelson, M.G., Coleman, P.J., Froidevaux, L., and Rosenberg, R.L.: 1978, ‘A time dependent model of the Jovian current sheet’, J. Geophys. Res. 83, 4823–4829.Google Scholar
  114. Kivelson, M.G., Khurana, K.K., Walker, R.J., Linker, J.A., Russell, C.R., Southwood, D.J., and Polanskey, C.: 1996, ‘A magnetic signature at Io: Initial report from the Galileo magnetometer’, Science 273, 337–340.PubMedGoogle Scholar
  115. Kivelson, M.G., Khurana, K.K., Russell, C.T., and Walker, R.J.: 1997a, ‘Intermittent short-duration magnetic field anomalies in the Io torus: Evidence for plasma interchange?’, Geophys. Res. Lett. 24, 2127.CrossRefGoogle Scholar
  116. Kivelson, M.G., Khurana, K.K., Coroniti, F.V., Joy, S., Russell, C.T., Walker, R.J., Warnecke, J., Bennett, L., and Polanskey, C.: 1997b, ‘Magnetic field and magnetosphere of Ganymede’, Geophys. Res. Lett. 24, 2155–2158.CrossRefGoogle Scholar
  117. Kivelson, M.G.: 2004, ‘Moon-magnetosphere interactions: a tutorial’, Adv. Space Res. 33, 2061–2077.CrossRefGoogle Scholar
  118. Kopp, A.: 1996, ‘Modification of the electrodynamic interaction between Jupiter and Io due to mass loading effects’, J. Geophys. Res. 101, 24943–24954.CrossRefGoogle Scholar
  119. Krimigis, S.M., et al.: 1979, ‘Hot plasma environment at Jupiter – Voyager 2 results’, Science 206, 977–984.Google Scholar
  120. Krimigis, S.M., Carbary, J.F., Keath, E.P., Bostrom, C.O., Axford, W.I., Gloeckler, G., Lanzerotti, L.J., and Armstrong, T.P.: 1981, ‘Characteristics of hot plasma in the Jovian magnetosphere –Results from the Voyager spacecraft’, J. Geophys. Res. 86, 8227–8257.Google Scholar
  121. Krimigis, S.M., Decker, R.B., Hill, M.E., Armstrong, T.P., Gloeckler, G., Hamilton, D.C., Lanzerotti, L.J., and Roelof, E.C.: 2003, ‘Voyager 1 exited the solar wind at a distance of ∼85 AU from the Sun’, Nature 426, 45–48.CrossRefPubMedGoogle Scholar
  122. Krimigis, S.M., Decker, R.B., Roelof, E.C., and Hill, M.E.: 2004, ‘Energetic particle observations near the termination shock’, V. Florinski, N.V. Pogorelov, and G.P. Zank (eds.), Physics of the Outer Heliosphere, AIP Conf. Proc. 719, pp. 133–138.Google Scholar
  123. Krisko, P.H. and Hill, T.W.: 1991, ‘Two-dimensional model of a slow-mode expansion fan at Io’, Geophys. Res. Lett. 18, 1947–1950.Google Scholar
  124. Krupp, N.: 2005, ‘Energetic particle populations in the magnetospheres of Jupiter and Saturn’, this volume.Google Scholar
  125. Krupp, N., Woch, J., Lagg, A., Wilken, B., Livi, S., and Williams, D.J.: 1998, ‘Energetic particle bursts in the predawn Jovian magnetotail’, Geophys. Res. Lett. 25, 1249–1253.CrossRefGoogle Scholar
  126. Krupp, N., Lagg, A., Livi, S., Wilken, B., Woch, J., Roelof, E.C., and Williams, D.J.: 2001, ‘Global flows of energetic ions in Jupiter’s equatorial plane: First-order approximation’, J. Geophys. Res. 106, 26017–26032.CrossRefGoogle Scholar
  127. Krupp, N., et al.: 2004, ‘Dynamics of the Jovian magnetosphere’, in F. Bagenal, T.E. Dowling, and W.B. McKinnon (eds.), Jupiter. The planet, satellites and magnetosphere, Cambridge University press, Cambridge, UK, pp. 617–638.Google Scholar
  128. Labelle, J. and Treumann, R.: 2002, ‘Auroral radio emissions, 1. Hisses, roars, and bursts’, Space Sci. Rev. 101, 295–440.CrossRefGoogle Scholar
  129. Lammer, H., Wurz, P., Patel, M.R., Killen, R., Kolb, C., Massetti, S., Orsini, S., and Milillo, A.: 2003, ‘The variability of Mercury’s exosphere by particle and radiation induced surface release processes’, Icarus 166, 238–247.CrossRefGoogle Scholar
  130. Landgraf, M., Krüger, H., Altobelli, N., and Grün, E.: 2003, ‘Penetration of the heliosphere by the interstellar dust stream during solar maximum’, J. Geophys. Res. 108, LIS 5-1, CiteID 8030.CrossRefGoogle Scholar
  131. Lellouch, E.: 2005, Io’s atmosphere and surface-atmosphere interactions’, this volume.Google Scholar
  132. Linker, J.A., Kivelson, M.G., and Walker, R.J.: 1991, ‘A three–dimensional MHD simulation of plasma flow past Io’, J. Geophys. Res. 96, 21037–21053.Google Scholar
  133. Louarn, P., Roux, A., Perraut, S., Kurth, W.S., and Gurnett, D.: 1998, ‘A study of the large-scale dynamics of the jovian magnetosphere using the Galileo plasma wave experiment’, Geophys. Res. Lett. 25, 2905–2908.CrossRefGoogle Scholar
  134. Louarn, P., Roux, A., Perraut, S., Kurth, W.S., and Gurnett, D.: 2000, ‘A study of the Jovian ‘energetic magnetospheric events’ observed by Galileo: Role in the radial plasma transport’, J. Geophys. Res. 105, 13073–13088.CrossRefGoogle Scholar
  135. Louarn, P., Mauk, B.H., Kivelson, M.G., Kurth, W.S., Roux, A., Zimmer, C., Gurnett, D.A., and Williams, D.J.: 2001, ‘A multi-instrument study of a Jovian magnetospheric disturbance’, J. Geophys. Res. 106, 29883–29898.CrossRefGoogle Scholar
  136. Love, S., and Brownlee, D.E.: 1993, ‘A direct measurement of the terrestrial mass accretion rate of cosmic dust’, Science 262, 550–553.Google Scholar
  137. Luhmann, J.G., Russell, C.T., and Tsyganenko, N.A.: 1998, ‘Disturbances in Mercury’s magnetosphere: Are the Mariner 10 ‘substorms’ simply driven?’, J. Geophys. Res. 103, 9113–9120.CrossRefGoogle Scholar
  138. Mauk, B.H., Williams, D.J., McEntire, R.W., Khurana, K.K., and Roederer, J.G.: 1999, ‘Storm-like dynamics of Jupiter’s inner and middle magnetosphere’, J. Geophys. Res. 104, 22759–22778.CrossRefGoogle Scholar
  139. McComas, D.J., et al.: 2004, ‘The interstellar hydrogen shadow: Observations of interstellar pickup ions beyond Jupiter’, J. Geophys. Res. 109, CiteID A02104.Google Scholar
  140. McDonald, F.B., Stone, E.C., Cummings, A.C., Heikkila, B., Lal, N., and Webber, W.R.: 2003, ‘Enhancements of energetic particles near the heliospheric termination shock’, Nature 426, 48–51.CrossRefPubMedGoogle Scholar
  141. McGrath, M.A.: 2002, ‘Hubble Space Telescope observations of Europa and Ganymede’, AGU Fall Meeting 2002, abstract # P52C-05.Google Scholar
  142. McNutt, R.L., Belcher, J.W., and Bridge, H.S.: 1981, ‘Positive ion observations in the middle magnetosphere of Jupiter’, J. Geophys. Res. 86, 8319–8342.Google Scholar
  143. Mei, Y., Thorne, R.M., and Bagenal, F.: 1995, ‘Analytic model for the density distribution in the Io plasma torus’, J. Geophys. Res. 100, 1823–1828.CrossRefGoogle Scholar
  144. Miller, S., Aylward, A., and Millward, G.: 2005, ‘Giant planet ionospheres and thermospheres: the importance of ion-neutral coupling’, this volume.Google Scholar
  145. Möbius, E., Hovestadt, D., Klecker, B., Scholer, M., and Gloeckler, G.: 1985, ‘Direct observation of He+pick-up ions of interstellar origin in the solar wind’, Nature 318, 426–429.CrossRefGoogle Scholar
  146. Mordaunt, D.H., Lambert, I.R., Morley, G.P., Ashfold, M.N.R., Dixon, R.N., Western, C.M., Schnieder, L., and Welge, K.H.: 1993, ‘Primary product channels in the photodissociation of methane at 121.6 nm’, J. Chem. Phys. 98, 2’054–2’065.CrossRefGoogle Scholar
  147. Morgan, T.H., and Killen, R.M.: 1997, ‘A non-stochiometric model of the composition of the atmospheres of Mercury and the Moon’, Planet. Space Sci. 45, 81–94.CrossRefGoogle Scholar
  148. Ness, N.F., Connerney, J.E.P., Lepping, R.P., Schulz, M., and Voigt, G.-H.: 1991, ‘The magnetic field and magnetospheric configuration of Uranus’, in J.T. Bergstralh, E.D.Miner, and M.S.Matthews (eds.), Univ. Arizona Press, Tucson, pp. 739–779.Google Scholar
  149. Neubauer, F.M.: 1980, ‘Nonlinear standing Alfvén wave current system at Io: Theory’, J. Geophys. Res. 85, 1171–1178.Google Scholar
  150. Neubauer, F.M.: 1998, ‘The sub-Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere’, J. Geophys. Res. 103, 19843–19866.CrossRefGoogle Scholar
  151. Neubauer, F.M., Gurnett, D.A., Scudder, J.D., and Hartle, R.E.: 1984, ‘Titan’s magnetospheric interaction’, in T. Gehrels and M.S. Matthews (eds.), Saturn, Univ. Arizona Press, Tucson, pp. 760–787.Google Scholar
  152. Neubauer, F.M., et al.: 1986, ‘First results from the Giotto magnetometer experiment at comet Halley’, Nature 321, 352–355.CrossRefGoogle Scholar
  153. Ness, N.F., Behannon, K.W., Lepping, R.P., Whang, Y.C., and Schatten, K.H.: 1974, ‘Magnetic field observations near Mercury: preliminary results from Mariner 10’, Science 185, 153–162.Google Scholar
  154. Northrop, T.G. and Connerney, J.E.P.: 1987, ‘A micrometeorite model and the age of Saturn’s rings’, Icarus 70, 124–137.CrossRefGoogle Scholar
  155. Ogilvie, K.W., Scudder, J.D., Hartle, R.E., Siscoe, G.L., Bridge, H.S., Lazarus, A.J., Asbridge, J.R., Bame, S.J., and Yeates, C.M.: 1974, ‘Observations at Mercury encounter by the plasma science instrument on Mariner 10’, Science 185, 146–152.Google Scholar
  156. Ogilvie, K.W., Scudder, J.D., Vasyliunas, V.M., Hartle, R.E., and Siscoe, G.L.: 1977, ‘Observations of the planet Mercury by the plasma electron experiment: Mariner 10’, J. Geophys. Res. 82, 1807–1824.Google Scholar
  157. Paonessa, M. and Cheng, A.F.: 1986, ‘Limits on ion radial diffusion coefficients in Saturn’s inner magnetosphere’, J. Geophys. Res. 91, 1391–1396.Google Scholar
  158. Parker, E.N.: 1961, ‘The stellar-wind regions’, Astrophys. J. 134, 20–27.CrossRefGoogle Scholar
  159. Phan, T.D., et al.: 2000, ‘Extended magnetic reconnection at the Earth’s magnetopause from detection of bi-directional jets’, Nature 404, 848–850.CrossRefPubMedGoogle Scholar
  160. Pollack, J.B.: 1975, ‘The rings of Saturn’, Space Sci. Rev. 18, 3–93.CrossRefGoogle Scholar
  161. Potter, A. and Morgan, T.H.: 1985, ‘Discovery of sodium in the atmosphere of Mercury’, Science 229, 651–653.Google Scholar
  162. Potter, A. and Morgan, T.H.: 1986, ‘Potassium in the atmosphere of Mercury’, Icarus 67, 336–340.CrossRefGoogle Scholar
  163. Poulet, F. and Cuzzi, J.N.: 2002, ‘The composition of Saturn’s rings’, Icarus 160, 350–358.CrossRefGoogle Scholar
  164. Pospieszalska, M.K. and Johnson, R.E.: 1991, ‘Micrometeorite erosion of the main rings as a source of plasma in the inner Saturnian plasma torus’, Icarus 93, 45–52.CrossRefGoogle Scholar
  165. Prangé, R., Pallier, L., Hansen, K.C., Howard, R. Vourlidas, A., Courtin, R., and Parkinson, C.: 2004, ‘A CME-driven interplanetary shock traced from the Sun to Saturn by planetary auroral storms’, Nature, in press.Google Scholar
  166. Pryor, W.R. and Hord, C.W.: 1991, ‘A study of photopolarimeter system UV absorption data on Jupiter, Saturn, Uranus, and Neptune: implications for auroral haze formation’, Icarus 91, 161–172.CrossRefGoogle Scholar
  167. Rao, M.V.V.S., Iga, I., and Srivastava, S.K.: 1995, ‘Ionization cross-sections for the production of positive ions from H2O by electron impact’, J. Geophys. Res. 100, 26421–26425.CrossRefGoogle Scholar
  168. Raulin, A.: 2005, ‘Exo-astrobiological aspects of Europa and Titan: from observations to speculations’, this volume.Google Scholar
  169. Richardson, J.D.: 1986, ‘Thermal ions at Saturn: Plasma parameters and implications’, J. Geophys. Res. 91, 1381–1389.Google Scholar
  170. Richardson, J.D.: 1998, ‘Thermal plasma and neutral gas in Saturn’s magnetosphere’, Rev. Geophys. 36, 501–524.CrossRefGoogle Scholar
  171. Richardson, J.D. and Eviatar, A.: 1988, ‘Observational and theoretical evidence for anisotropies in Saturn’s magnetosphere’, J. Geophys. Res. 93, 7297–7306.Google Scholar
  172. Richardson, J.D. and Jurac, S.: 2004, ‘A self-consistent model of plasma and neutrals at Saturn: The ion tori’, J. Geophys. Res., in press.Google Scholar
  173. Richardson, J.D., Eviatar, A., Siscoe, G.L.: 1986, ‘Satellite tori at Saturn’, J. Geophys. Res. 91, 8749–8755.Google Scholar
  174. Richardson, J.D., Belcher, J.W., McNutt, R.L., Jr., and Szabo, A.: 1995, ‘The plasma environment of Neptune’, in D.P. Cruikshank and M.S. Matthews (eds.), Neptune, Univ. Arizona Press, Tucson.Google Scholar
  175. Richardson, J.D., Eviatar, A., McGrath, M.A., Vasyliuñas, V.M.: 1998, ‘OH in Saturn’s magnetosphere: Observations and implications’, J. Geophys. Res. 103, 20245–20256.CrossRefGoogle Scholar
  176. Roos-Serote, M.: 2005, ‘The changing face of Titan’s haze: is it all dynamics?’, this volume.Google Scholar
  177. Russell, C.T.: 1989, ‘ULF waves in theMercury magnetosphere’, Geophys. Res. Lett. 16, 1253–1256.Google Scholar
  178. Russell, C.T.: 2001, ‘The dynamics of planetary magnetospheres’, Planet. Space Sci. 49, 1005–1030.CrossRefGoogle Scholar
  179. Russell, C.T., Baker, D.N., and Slavin, J.A.: 1988, ‘The magnetosphere ofMercury’, in F. Vilas, C.R. Chapman, and M.S. Matthews (eds.), Mercury, Univ. Arizona Press, Tucson, pp. 514–561.Google Scholar
  180. Russell, C.T., et al.: 1999, ‘Mirror mode structures at the Gallileo-Io flyby: Observations’, J. Geophys. Res. 104, 17471–17478.CrossRefGoogle Scholar
  181. Russell, C.T., Blanco-Cano, X., and Kivelson, M.G.: 2003, ‘Ion cyclotron waves in Io’s wake region’, Planet. Space Sci. 51, 233–238.CrossRefGoogle Scholar
  182. Sagan, C., and Thompson, W.R.: 1984, ‘Production and condensation of organic gases in the atmosphere of Titan’, Icarus 59, 133–161.CrossRefGoogle Scholar
  183. Sagan, C., Khare, B.N., and Lewis, J.S.: 1984, ‘Organic matter in the Saturn system’, in T. Gehrels and M.S. Matthews (eds.), Saturn, Univ. Arizona Press, pp. 788–807.Google Scholar
  184. Sandel, B.R. and Broadfoot, A.L.: 1981, ‘Morphology of Saturn’s aurora’, Nature 292, 679–682.CrossRefGoogle Scholar
  185. Santos-Costa, D. and Bourdarie, S.A.: 2001, ‘Modeling the inner Jovian electron radiation belt including non-equatorial particles’, Planet. Space Sci. 49, 303–312.CrossRefGoogle Scholar
  186. Santos-Costa, D., Sault, R., Bourdarie, S., Boscher, D., Bolton, S., Thorne, R., Leblanc, Y., Dulk, G., Levin, S., and Gulkis, S.: 2001, ‘Synchrotron emission images from three-dimensional modeling of the Jovian electron radiation belts’, Adv. Space Res. 28, 915–918.CrossRefGoogle Scholar
  187. Scarf, F.L., Frank, L.A., Gurnett, D.A., Lanzerotti, L.J., Lazarus, A., and Sittler, E.C., Jr.: 1984, ‘Measurements of plasma, plasma waves, and suprathermal charged particles in Saturn’s inner magnetosphere’, in T. Gehrels and M.S. Matthews (eds.), Saturn, Univ. Arizona Press, Tucson, pp. 318–353.Google Scholar
  188. Schardt, A.W., Behannon, K.W., Lepping, R.P., Carbary, J.F., Eviatar, A., and Siscoe, G.L.: 1984, ‘The outer magnetosphere’, in T. Gehrels and M.S.Matthews (eds.), Saturn, Univ. Arizona Press, Tucson, pp. 416–459.Google Scholar
  189. Selesnick, R.S.: 1988, ‘Magnetospheric convection in the non-dipolar magnetic field of Uranus’, J. Geophys. Res. 93, 9607.Google Scholar
  190. Selesnick, R.S.: 1990, ‘Plasma convection in Neptune’s magnetosphere’, Geophys. Res. Lett. 17, 1681–1684.Google Scholar
  191. Selesnick, R.S., and Richardson, J.D.: 1986, ‘Plasmasphere formation in arbitrarily oriented magnetospheres’, Geophys. Res. Lett. 13, 624–627.Google Scholar
  192. Shemansky, D.E., and Hall, D.T.: 1992, ‘The Distribution of Atomic Hydrogen in theMagnetosphere of Saturn’, J. Geophys. Res. 97, 4143–4161.Google Scholar
  193. Shemansky, D.E., Matheson, P., Hall, D.T., Hu, H.-Y., and Tripp, T.M.: 1993, ‘Detection of the hydroxyl radical in the Saturn magnetosphere’, Nature 363, 329–331.CrossRefGoogle Scholar
  194. Shi, M., Baragiola, R.A., Grosjean, D.E., Johnson, R.E., Jurac, S., and Schou, J.: 1995, ‘Sputtering of water ice surfaces and the production of extended neutral atmospheres’, J. Geophys. Res. 100, 26’387–26’396.CrossRefGoogle Scholar
  195. Simpson, J.A., Hamilton, D., Lentz, G., McKibben, R.B., Mogro-Campero, A., Perkins, M., Pyle, K.R., Tuzzolino, A.J., and O’Gallagher, J.J.: 1974, ‘Protons and electrons in Jupiter’s magnetic field: Results from the University of Chicago experiment on Pioneer 10’, Science 183, 306–309.Google Scholar
  196. Siscoe, G.L.: 1978, ‘Jovian plasmaspheres’, J. Geophys. Res. 83, 2118–2126.Google Scholar
  197. Siscoe, G.L., and Summers, D.: 1981, ‘Centrifugally driven diffusion of iogenic plasma’, J. Geophys. Res. 86, 8471–8479.Google Scholar
  198. Slavin, J.A.: 2004, ‘Mercury’s magnetosphere’, Adv. Space Res. 33, 1859–1874.CrossRefGoogle Scholar
  199. Southwood, D.J. and Kivelson, M.G.: 1987, ‘Magnetospheric interchange instability’, J. Geophys. Res. 92, 109–116.Google Scholar
  200. Strobel, D.F: 2005, ‘Photochemistry in outer solar system atmospheres’, this volume.Google Scholar
  201. Su, Y., Ergun, R., Bagenal, F., and Delamere, P.: 2003, ‘Io-related auroral arcs: Modelling parallel electric fields’, J. Geophys. Res. 108, 1094.CrossRefGoogle Scholar
  202. Summers, M.E. and Strobel, D.F.: 1989, ‘Triton’s atmosphere – A source of N and H for Neptune’s magnetosphere’, Geophys. Res. Lett. 18, 2309–2312.Google Scholar
  203. Thomas, N., Bagenal, F., Hill, T.W., and Wilson, J.K.: 2004, ‘The Io neutral clouds and plasma torus’, in F. Bagenal, T.E. Dowling, and W.B. McKinnon (eds.), Jupiter. The planet, satellites and magnetosphere, Cambridge University Press, Cambridge, UK, pp. 561–591.Google Scholar
  204. Thorne, R.M., Armstrong, T.P., Stone, S., Williams, D.J., McEntire, R.W., Bolton, S.J., Gurnett, D.A., and Kivelson, M.G.: 1997, ‘Galileo evidence for rapid interchange transport in the Io torus’, Geophys. Res. Lett. 24, 2131.CrossRefGoogle Scholar
  205. Tyler, G.L., et al.: 1989, ‘Voyager radio science observations of Neptune and Triton’, Science 246, 1466–1473.Google Scholar
  206. Van Allen, J.A.: 1984, ‘Energetic particles in the inner magnetosphere of Saturn’, in T. Gehrels and M.S. Matthews (eds.), Saturn, Univ. Arizona Press, Tucson, pp. 281–317.Google Scholar
  207. Vasyliunas, V.M.: 1975, ‘Modulation of Jovian interplanetary electrons and the longitude variation of decametric emissions’, Geophys. Res. Lett. 2, 87–88.Google Scholar
  208. Vasyliunas, V.M.: 1983, ‘Plasma distribution and flow’, in A.J. Dessler (ed.), Physics of the Jovian magnetosphere, Cambridge Univ. Press, New York, pp. 395–453.Google Scholar
  209. Vasyliunas, V.M.: 1986, ‘The convection-dominated magnetosphere of Uranus’, Geophys. Res. Lett. 13, 621–623.Google Scholar
  210. Williams, D.J. and Thorne, R.M.: 2003, ‘Energetic particles over Io’s polar caps’, J. Geophys. Res. 108, SMP 7-1, CiteID 1397.Google Scholar
  211. Winterhalter, D., Acña, M., and Zakharov, A. (eds.): 2004, Mars’ Magnetism and its Interaction with the Solar Wind, Space Sci. Rev. 111, Kluwer Academic Publsihers, Dordrecht, NL.Google Scholar
  212. Wong, A.-S., Yung, Y.L., Friedson, A.J.: 2003, ‘Benzene and haze formation in the polar atmosphere of Jupiter’, Geophys. Res. Lett. 30, 30-1, CiteID 1447, DOI 10.1029/2002GL016661.CrossRefGoogle Scholar
  213. Wright, A.N. and Schwartz, S.J.: 1990, ‘The equilibrium of a conducting body embedded in a flowing plasma’, J. Geophys. Res. 95, 4027–4038.Google Scholar
  214. Young, D.T., et al.: 2003, ‘Cassini Plasma Spectrometer Investigation’, Space Sci. Rev., in press.Google Scholar
  215. Zarka, P. and Kurth, W.S.: 2005, ‘Radio wave emission from the outer planets before Cassini’, this volume.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Observatoire Midi PyrénéesToulouseFrance

Personalised recommendations